Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
2y=m-mx\\
2(m-1)x+(m-1).2y=2\end{matrix}\right.\)
\(\Rightarrow 2(m-1)x+(m-1)(m-mx)=2\)
\(\Leftrightarrow x[2(m-1)-m(m-1)]=2-m(m-1)\)
\(\Leftrightarrow x(2-m)(m-1)=(2-m)(m+1)(*)\)
Với $m=2$ thì PT $(*)$ có vô số nghiệm $x$, kéo theo HPT có vô số nghiệm $(x,y)$
Với $m=1$ thì PT $(*)$ vô nghiệm, kéo theo HPT vô nghiệm
Với $m\neq 1;m\neq 2$ thì PT $(*)$ có nghiệm duy nhất \(x=\frac{(2-m)(m+1)}{(2-m)(m-1)}=\frac{m+1}{m-1}\), kéo theo HPT có nghiệm $(x,y)$ duy nhất
Tóm lại để PT có nghiệm thì $m\neq 1$
Ta có :
\(\left\{{}\begin{matrix}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-m^2+2\\\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-m^2+2\\mx+x+m^2x-m^3+2m=2m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-m^2+2\\x\left(m+m^2+1\right)=m^3-1\end{matrix}\right.\)
Để hệ pt có nghiệm duy nhất :
\(\Leftrightarrow m^2+m+1>0\)
\(\Leftrightarrow\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0\) (luôn đúng)
Khi đó hệ pt có nghiệm duy nhất là :
\(\left\{{}\begin{matrix}x=m-1\\y=2-m\end{matrix}\right.\)
Vậy...
Ta có :
\(P=\left(m-1\right)\left(2-m\right)\)
\(=2m-m^2-2+m\)
\(=3m-m^2-2\)
\(=\frac{1}{4}-\left(m-\frac{3}{2}\right)^2\le\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{3}{2}\)
Vậy...
a) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{m}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Xét \(\dfrac{m}{3}=\dfrac{-2}{2}\Leftrightarrow m=-3\) .
Dễ thấy \(m=-3\) thỏa mãn: \(\dfrac{-3}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Vậy \(m=-3\) hệ vô nghiệm.
b) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{2}{1}=\dfrac{-m}{1}\ne\dfrac{5}{7}\)
Xét: \(\dfrac{2}{1}=\dfrac{-m}{1}\Leftrightarrow m=-2\)
Do \(\dfrac{2}{1}=\dfrac{-\left(-2\right)}{1}\ne\dfrac{5}{7}\) thỏa mãn nên m = - 2 hệ phương trình vô nghiệm.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=2+2m\\\left(x+y\right)^2=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}xy=1-m\\\left(x+y\right)^2=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=2\\xy=1-m\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=-2\\xy=1-m\end{matrix}\right.\end{matrix}\right.\) theo Viet đảo, x và y là nghiệm của:
\(\left[{}\begin{matrix}t^2-2t+1-m=0\left(1\right)\\t^2+2t+1-m=0\left(2\right)\end{matrix}\right.\)
Do vai trò của x và y hoàn toàn như nhau, nên nếu \(\left(x_0;y_0\right)\) là 1 nghiệm thì \(\left(y_0;x_0\right)\) cùng là 1 nghiệm
Mặt khác, ta thấy \(\Delta'_1=\Delta'_2=m\Rightarrow\left(1\right)\) và (2) luôn có số nghiệm giống nhau
\(\Rightarrow\) Phương trình đã cho có đúng 2 nghiệm khi và chỉ khi (1) và (2) mỗi pt có đúng 1 nghiệm kép
\(\Rightarrow\Delta=0\Rightarrow m=0\)
Khi đó nghiệm của hệ là \(\left[{}\begin{matrix}\left(x;y\right)=\left(1;1\right)\\\left(x;y\right)=\left(-1;-1\right)\end{matrix}\right.\)