Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A^2=\frac{4\left(m+1\right)^2}{m^2+3}\)
\(\Rightarrow A^2\left(m^2+3\right)-4\left(m+1\right)^2=0\)
\(\Leftrightarrow A^2m^2+3A^2-4m^2-8m-4=0\)
\(\Leftrightarrow\left(A^2-4\right)m^2-8m+3A^2-4=0\)
*Với \(A=\pm2\):
\(\Rightarrow8m+12-4=0\)
\(\Leftrightarrow m=-1\)
*Với \(A\ne\pm2:\)
Đk để pt có ng0 thì \(\Delta\ge0\)
\(\Rightarrow64-4\left(A^2-4\right)\left(3A^2-4\right)\ge0\)
\(\Leftrightarrow16-3A^4+16A^2-16\ge0\)
\(\Leftrightarrow0\le A^2\le\frac{16}{3}\)
\(\Rightarrow A^2_{max}=\frac{16}{3}\Leftrightarrow A=\pm\sqrt{\frac{16}{3}}=\pm\frac{4\sqrt{3}}{3}\)
Vậy Amax\(=\frac{4\sqrt{3}}{3}\Leftrightarrow\frac{2\left|m+1\right|}{\sqrt{m^2+3}}=\frac{4\sqrt{3}}{3}\)
*Với \(m\ge-1\)
\(\Rightarrow\frac{m+1}{\sqrt{m^2+3}}=\frac{2\sqrt{3}}{3}\)
\(\Rightarrow3m+3=\sqrt{12\left(m^2+3\right)}\)
\(\Leftrightarrow9m^2+9+18m=12m^2+36\)
\(\Leftrightarrow3m^2-18m+27=0\)
\(\Leftrightarrow m=3\left(TM\right)\)
*Với m<1:
\(\Rightarrow-3m-3=\sqrt{12\left(m^2+3\right)}\)
\(\Leftrightarrow3m^2-18m+27=0\)
\(\Leftrightarrow m=3\left(KTM\right)\)
Vậy Amax\(=\frac{4\sqrt{3}}{3}\Leftrightarrow m=3\)
\(A=2\sqrt{\frac{\left(m+1\right)^2}{m^2+3}}\)
Quy về bài toán tìm max của \(P=\frac{m^2+2m+1}{m^2+3}\)
\(P=1+\frac{2m-2}{m^2+3}\)
Đặt \(B=\frac{2m-2}{m^2+3}\)
\(\Rightarrow Bm^2-2m+3B+2=0\)(*)
Xét B=0=>m=1
Xét \(B\ne0\)\(\Rightarrow\)Để (*) có nghiệm thì \(\Delta\)'=\(1-3B^2-2B\ge0\)
\(\Leftrightarrow\left(1-3B\right)\left(1+B\right)\ge0\)
\(\Leftrightarrow-1\le B\le\frac{1}{3}\)
\(\Rightarrow A\le\)\(\frac{4}{\sqrt{3}}\)
"="<=>m=3
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(1+\sqrt{2}\right)^2+\left(m+1\right)\left(1+\sqrt{2}\right)-6=0\Leftrightarrow4\sqrt{2}-2=-m\left(1+\sqrt{2}\right)\)
\(m=\frac{2-4\sqrt{2}}{\sqrt{2}+1}=....\)
b) A=\(x^4-13x^2+36\) không làm được nữa.....
![](https://rs.olm.vn/images/avt/0.png?1311)
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
https://vndoc.com/de-thi-hoc-sinh-gioi-mon-toan-lop-9-nam-hoc-2015-2016-truong-thcs-thanh-van-ha-noi/download