Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2
=>m<=1 hoặc m>=-1
b: Để A là tập con của B thì m-1>-2 và 4<=2m+2
=>m>-1 và 2m+2>=4
=>m>-1 và m>=1
=>m>=1
c: Để B là tập con của B thì m-1<-2 và 2m+2<=4
=>m<-1 và m<=1
=>m<-1
ĐKXĐ: \(x^2-3x+1\ne0\)
\(\Leftrightarrow x\ne\left\{\frac{3-\sqrt{5}}{2};\frac{3+\sqrt{5}}{2}\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{3-\sqrt{5}}{2}\\b=\frac{3+\sqrt{5}}{2}\end{matrix}\right.\)
Đến đây thế số bấm máy biểu thức Q thôi: \(Q=14\)
3.
\(\left|2x-4\right|< 10\Leftrightarrow-10< 2x-4< 10\)
\(\Leftrightarrow-3< x< 7\)
\(\Rightarrow C=\left(-3;7\right)\)
\(\left|-3x+5\right|>8\Rightarrow\left[{}\begin{matrix}-3x+5>8\\-3x+5< -8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x< -1\\x>\frac{13}{3}\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-1\right)\cup\left(\frac{13}{3};+\infty\right)\)
\(\Rightarrow C\cap D=\left(-3;-1\right)\cap\left(\frac{13}{3};7\right)\)
\(\Rightarrow\left(C\cap\right)D\cup E=\left(-3;7\right)\)
4.
Hình như cái đề chẳng liên quan gì đến đáp án hết :)
1.
\(A\cap B\ne\varnothing\Leftrightarrow\left\{{}\begin{matrix}2m-1\le m+2\\2m+3\ge m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\m\ge-3\end{matrix}\right.\) \(\Rightarrow-3\le m\le3\)
2.
\(\frac{5}{\left|2x-1\right|}>2\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\\left|2x-1\right|< \frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{5}{2}< 2x-1< \frac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{3}{4}< x< \frac{7}{4}\end{matrix}\right.\)
Rất tiếc tập này không thể liệt kê được (có vô số phần tử)
\(\Leftrightarrow x^3-6x^2+11x-m=0\) (1) có 3 nghiệm pb \(x=\left\{a;b;c\right\}\)
Theo định lý Viet:
\(\left\{{}\begin{matrix}a+b+c=6\\ab+bc+ca=11\\abc=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2b+b=6\\b\left(a+c\right)+ac=11\\abc=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=2\\2b^2+ac=11\\m=abc\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=2\\ac=11-2b^2=3\\m=b.ac=2.3=6\end{matrix}\right.\)
Vậy \(m=6\)