\(\dfrac{2x-2}{x+1}\) cắt đường thẳng y = 2x + m tại hai điểm phân bi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Lời giải:

Đường tròn (C):

\(x^2+y^2+2x-2y-2=0\)

\(\Leftrightarrow (x+1)^2+(y-1)^2=4=2^2\)

Do đó đường tròn (C) là đường tròn có tâm \(I(-1;1)\) bán kính \(R=2\)

Từ $I$ kẻ \(IH\perp BC\) thì $H$ là trung điểm của $BC$

\(\Rightarrow BH=\sqrt{3}\)

Áp dụng định lý Pitago:

\(IH=\sqrt{BI^2-BH^2}=\sqrt{R^2-3}=\sqrt{4-3}=1(1)\)

Mà: \(IH=d(I, d)=\frac{|-1-m+2m+3|}{\sqrt{m^2+1}}=\frac{|m+2|}{\sqrt{m^2+1}}(2)\)

Từ \((1); (2)\Rightarrow \frac{|m+2|}{\sqrt{m^2+1}}=1\)

\(\Rightarrow (m+2)^2=m^2+1\Leftrightarrow m^2+4m+4=m^2+1\)

\(\Leftrightarrow 4m+3=0\Leftrightarrow m=\frac{-3}{4}\)

NV
3 tháng 11 2019

Phương trình hoành độ giao điểm:

\(x^2+6x=2x-m+2\Leftrightarrow x^2+4x+m-2=0\) (1)

\(\Delta'=4-\left(m-2\right)=6-m>0\Rightarrow m< 6\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=m-2\end{matrix}\right.\)

\(x_1^3+x_2^3\ge4\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\ge4\)

\(\Leftrightarrow\left(-4\right)^3+12\left(m-2\right)\ge4\)

\(\Leftrightarrow12m\ge92\Rightarrow m\ge\frac{23}{3}\)

Vậy ko tồn tại m thỏa mãn?

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

NV
25 tháng 4 2020

Câu 1:

Đường tròn (C) tâm \(I\left(1;2\right)\) bán kính \(R=2\)

\(\overrightarrow{IM}=\left(2;2\right)=2\left(1;1\right)\)

Do AB luôn vuông góc AM nên đường thẳng AB nhận (1;1) là 1 vtpt

Phương trình AB có dạng: \(x+y+c=0\)

Theo công thức diện tích tam giác:

\(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}=\frac{1}{2}R^2sin\widehat{AIB}\le\frac{1}{2}R^2\)

\(\Rightarrow S_{max}=\frac{1}{2}R^2\) khi \(\widehat{AIB}=90^0\)

\(\Rightarrow d\left(I;AB\right)=\frac{R}{\sqrt{2}}=\sqrt{2}\)

\(\Rightarrow\frac{\left|1+2+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Leftrightarrow\left|c+3\right|=2\Rightarrow\left[{}\begin{matrix}c=-1\\c=-5\end{matrix}\right.\)

Có 2 đường thẳng AB thỏa mãn: \(\left[{}\begin{matrix}x+y-1=0\\x+y-5=0\end{matrix}\right.\)

TH1: \(x+y-1=0\Rightarrow y=1-x\)

Thay vào pt đường tròn: \(x^2+\left(1-x\right)^2-2x-4\left(1-x\right)+1=0\)

Giải ra tọa độ A hoặc B (1 cái là đủ) rồi tính được AM

TH2: tương tự.

Bạn tự làm nốt phần còn lại nhé

25 tháng 4 2020

Đây là đề bài 1 chính thức nha bạn!

Trong Oxy, cho (C1): \(x^2+y^2-2x-4y+1=0\), M (3; 4)
a) Tìm tọa độ tâm I và tính bán kính R của (C1).
b) Viết phương trình tiếp tuyến d1 với đường tròn (C1) tại giao điểm của\(\Delta_1:x-2y+5=0,\Delta_2:3x+y+1=0\)
c) Viết phương trình tiếp tuyến d2 với đường tròn (C1) biết d2 song song với d: \(4x+3y+2020=0\)
d) Viết phương trình đường tròn (C2) có tâm M, cắt đường tròn (C1) tại hai điểm A, B sao cho \(S_{\Delta IAB}\)lớn nhất.

NV
15 tháng 10 2019

Phương trình hoành độ giao điểm:

\(-x^2+4x-2=-2x+3m\)

\(\Leftrightarrow x^2-6x+3m+2=0\)

\(\Delta'=9-3m-2=7-3m>0\Rightarrow m< \frac{7}{3}\)

Theo định lý Viet ta có: \(x_A+x_B=6\)

\(\Rightarrow y_A+y_B=-2x_A+3m+-2x_B+3m=-2\left(x_A+x_B\right)+6m=6m-12\)

Gọi I là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}x_I=\frac{x_A+x_B}{2}=3\\y_I=\frac{y_A+y_B}{2}=3m-6\end{matrix}\right.\)

\(\Rightarrow I\left(3;3m-6\right)\)

22 tháng 12 2018

vui giúp mình với nha mọi người

28 tháng 12 2018

Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:

\(-3=4a+b\)

Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:

\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)

Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)

b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:

\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)

Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé

Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R

\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)

Chọn các điểm:

x 1 3 -1 2 -2

y 4 0 0 3 -5

NV
28 tháng 1 2019

Phương trình hoành độ giao điểm:

\(2x^2-3x+2=x^2-5x+m\)

\(\Leftrightarrow x^2+2x+2-m=0\) (1)

Để hai đồ thị cắt nhau tại 2 điểm phân biệt \(\Rightarrow\left(1\right)\) có 2 nghiệm phân biệt

\(\Rightarrow\Delta'=1-\left(2-m\right)=m-1>0\Rightarrow m>1\)

Gọi M là trung điểm AB với hoành độ A, B là nghiệm của (1)

\(\Rightarrow x_M=\dfrac{x_A+x_B}{2}=-1\)

\(\Rightarrow\) quỹ tích M là phần phía trên điểm có tọa độ \(\left(-1;7\right)\) của đường thẳng \(x=-1\)