\(\dfrac{-1}{3}x^{3} -2x^{2}+mx+3 \) có hai điểm cực trị A và B thỏ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

y’ = x² – 4x + 3 = 0 ⇔ x =1, x = 3 y” = 2x – 4, y”(1) = -2, y”(3) = 2 Suy ra hàm số đạt cực tiểu tại x = 3. Phương trình tiếp tuyến tại điểm cực tiểu có hệ số góc là y'(3) = 0. Do đó, tiếp tuyến song song với trục hoành. Chọn B

31 tháng 3 2017

y’= x2 – 4x + 3 = 0 ⇔ x = 1, x = 3

y’’ = 2x -4, y’’(1) = -2, y’’(3) = 2

Suy ra hàm số đạt cực tiểu tại x = 3.

Phương trình tiếp tuyến tại điểm cực tiểu có hệ số góc y’(3) = 0. Do đó tiếp tuyến song song với trục hoành.

Chọn đáp án 2



21 tháng 3 2023

TXĐ: D = R

\(y'=3x^2-6x=0\) \(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=2\Rightarrow y=-3\end{matrix}\right.\)

Suy ra 2 điểm cực trị của đồ thị là: A(0; 1) và B(2; -3)

Ptđt đi qua 2 điểm cực trị:

\(\dfrac{x}{2}=\dfrac{y-1}{-4}\) \(\Rightarrow-2x=y-1\) \(\Leftrightarrow y=-2x+1\left(d'\right)\)

Vì \(d\perp d'\) \(\Rightarrow\left(2m-1\right)\cdot\left(-2\right)=-1\) \(\Leftrightarrow m=\dfrac{3}{4}\)

Chọn B

29 tháng 4 2016

a. Tiếp tuyến của \(\left(C_m\right)\) tại điểm có hoành độ x = 1 có phương trình :

\(y=\left(m-2\right)\left(x-1\right)+3m-2=\left(m-2\right)x+3m\)

Yêu cầu của bài toán khi và chỉ khi \(\begin{cases}m-2=3\\2m\ne10\end{cases}\) vô nghiệm

Vậy không tồn tại m thỏa mãn yêu cầu bài toán

b. Ta có \(y'=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+m-\frac{7}{3}=3\left(x-\frac{2}{3}\right)^2+m-\frac{7}{3}\)

Suy ra \(y'\ge m-\frac{7}{3}\)

Tiếp tuyến tại điểm có hoành độ \(x=\frac{2}{3}\) có hệ số góc nhỏ nhất và hệ số góc có giá trị \(k=m-\frac{7}{3}\)

Yêu cầu bài toán \(\Leftrightarrow k.2=-1\Leftrightarrow\left(m-\frac{7}{3}\right).2=-1\Leftrightarrow m=\frac{11}{6}\)

30 tháng 1 2018

Chọn C

[Phương pháp tự luận]

Ta có : y = 6 x 2 - 6 ( m + 1 ) x + 6 m

 

Điều kiện để hàm số có 2 điểm cực trị là m ≠ 1

Hệ số góc đt AB là  k = - ( m - 1 ) 2

Đt AB vuông góc với đường thẳng y = x + 2

31 tháng 12 2019

+ Ta có  đạo hàm y’ = 6x2- 6( m+ 1) x+ 6m

Điều kiện để hàm số có 2 điểm cực trị là : m≠ 1

Tọa độ 2 điểm cực trị là A( 1 ; 3m-1) và B ( m ; -m3+ 3m2)

+ Hệ số góc đường thẳng AB  là :k= - ( m-1) 2

+ Đường thẳng AB vuông góc với đường thẳng y= x+ 2 khi và chỉ khi k= -1

Hay – ( m-1) 2= -1( vì 2 đường thẳng vuông góc với nhau thì tích hai hệ số góc bằng -1) JPHEK2o02olK.png

Chọn C.

23 tháng 4 2016

\(f'\left(x\right)=6\left(x^2+\left(m-1\right)x+m-2\right)\)

\(f'\left(x\right)=0\Leftrightarrow g\left(x\right)=x^2+\left(m-1\right)x+m-2=0\)

Hàm số có cực đại và cực tiểu \(\Leftrightarrow f'\left(x\right)=0\) hay \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta_g=\left(m-3\right)^2>0\Leftrightarrow m\ne3\)

Ta có \(f\left(x\right)=g\left(x\right)\left[2x+\left(m-1\right)\right]-\left(m-3\right)^2x-\left(m^2-3m+3\right)\)

Với \(m\ne3\) thì \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1;x_2\) và hàm số đạt cực trị tại  \(x_1;x_2\)  do \(\begin{cases}g\left(x_1\right)=0\\g\left(x_2\right)=0\end{cases}\) nên \(\begin{cases}y_1=f\left(x_1\right)=-m\left(m-3\right)^2x_1-\left(m^2-3m+3\right)\\y_2=f\left(x_2\right)=-m\left(m-3\right)^2x_2-\left(m^2-3m+3\right)\end{cases}\)

Suy ra đường thẳng qua cực đại, cực tiểu là :

\(\Delta:y=-\left(m-3\right)^2x-\left(m^2-3m+3\right)\)

ta có \(\Delta\) song song với đường \(y=ax+b\)

\(\Leftrightarrow\begin{cases}m\ne3\\-\left(m-3\right)^2=a\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne3,a< 0\\\left(m-3\right)^2=-a\end{cases}\) \(\Leftrightarrow\begin{cases}a< 0\\m-3=\pm\sqrt{-a}\end{cases}\) \(\Leftrightarrow\begin{cases}a< 0\\m=3\pm\sqrt{-a}\end{cases}\)

Vậy : Nếu \(a\ge0\) thì không tồn tại m

         Nếu a < 0 thì \(m=3\pm\sqrt{-a}\)

 

Tham khảo:

undefined

undefined

undefined

NV
30 tháng 8 2020

2.

\(y'=3x^2+6\left(m-1\right)x+6m-12\)

Để hàm số có 2 cực trị

\(\Leftrightarrow\Delta'=9\left(m-1\right)^2-3\left(6m-12\right)>0\)

\(\Leftrightarrow9m^2-36m+45>0\) (luôn đúng)

Tiến hành chia y cho y' và lấy phần dư ta được pt đường thẳng AB có dạng:

\(y=\left(2m-6\right)x-2m^2+6m-5\)

AB song song d khi và chỉ khi:

\(\left\{{}\begin{matrix}2m-6=-4\\-2m^2+6m-5\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\-2m^2+6m-6\ne0\end{matrix}\right.\) \(\Rightarrow m=1\)

NV
30 tháng 8 2020

1.

Đường thẳng d: \(9x-2y+5=0\Leftrightarrow y=\frac{9}{2}x+\frac{5}{2}\)

\(y'=3x^2+4\left(m-1\right)x+m^2-4m+1\)

Để hàm số có 2 cực trị

\(\Leftrightarrow\Delta'=4\left(m-1\right)^2-3m^2+12m-3>0\)

\(\Leftrightarrow m^2+4m+1>0\)

Khi đó, tiến hành chia \(y\) cho \(y'\) và lấy phần dư ta được pt AB có dạng:

\(y=\left(\frac{2}{3}m^2-\frac{32}{9}m+\frac{14}{9}\right)x-2m^2-2-\frac{2}{9}\left(m-1\right)\left(m^2-4m+1\right)\)

Để AB vuông góc d \(\Leftrightarrow\) tích 2 hệ số góc bằng -1

\(\Leftrightarrow\frac{9}{2}\left(\frac{2}{3}m^2-\frac{32}{9}m+\frac{14}{9}\right)=-1\)

\(\Leftrightarrow3m^2-16m+8=0\) \(\Rightarrow\left[{}\begin{matrix}m=\frac{8+2\sqrt{10}}{3}\\m=\frac{8-2\sqrt{10}}{3}\end{matrix}\right.\)

Bạn nên tính toán lại cho chắc

NV
18 tháng 7 2021

\(y'=\dfrac{x^2-2x+2m-2}{\left(x-1\right)^2}\)

Hàm có 2 cực trị \(\Leftrightarrow y'=0\) có 2 nghiệm pb khác 1

\(\Leftrightarrow\left\{{}\begin{matrix}2m-3\ne0\\\Delta'=1-\left(2m-2\right)>0\end{matrix}\right.\) \(\Leftrightarrow m< \dfrac{3}{2}\)

Khi đó, phương trình đường thẳng qua 2 cực trị có dạng:

\(y=\dfrac{2x-2m}{1}=2x-2m\)

Đường thẳng này có cùng hệ số góc với d nên chúng song song nhau