\(\left(m^2-2\right)x+m-1\) song song với đường thẳng y=3x-2 tại đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
21 tháng 12 2020

Xét phương trình hoành độ giao điểm của hai đường thẳng 

ta có :\(\left(m^2-2\right)x+m-1=3x-2\)

Để giao điểm có hoành độ x=-1 thì phương trình trên nhận x=-1 ;à nghiệm hay

\(\left(m^2-2\right)\left(-1\right)+m-1=3\left(-1\right)-2\)

\(\Leftrightarrow m^2-m-6=0\Leftrightarrow\left(m+2\right)\left(m-3\right)=0\Leftrightarrow\orbr{\begin{cases}m=-2\\m=3\end{cases}}\)

30 tháng 5 2017

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất

28 tháng 3 2020

để (d) song song zới đường thẳng (d') 

=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)

b)phương trình hoành độ giao điểm của (d) zà (P)

\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)

ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)

để d cắt P tại hai điểm phân biệt 

=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)

lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)

để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)

từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương

3 tháng 8 2017

a. Gọi \(A\left(x_0;y_o\right)\) là điểm cố định mà \(\Delta\)đi qua

Ta có phương trinh hoành độ giao điểm \(\left(m-3\right)x_o-\left(m-2\right)y_0+m-1=0\)

\(\Leftrightarrow mx_0-my_0+m-\left(3x_0-2y_0+1\right)=0\Leftrightarrow m\left(x_0-y_0+1\right)-\left(3x_0-2y_0+1\right)=0\)

Vì đẳng thức đúng với mọi m nên \(\hept{\begin{cases}x_0-y_0+1=0\\3x_0-2y_0-1=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=3\\y_0=4\end{cases}\Rightarrow}A\left(3;4\right)}\)

Vậy \(\Delta\)luôn đi qua điểm \(A\left(3;4\right)\)cố định 

b. Ta có \(\left(m-2\right)y=\left(m-3\right)x+m-1\)

Để \(\Delta\)song song với Ox thì \(\hept{\begin{cases}m-2\ne0\\m-3=0\end{cases}\Rightarrow m=3}\)

Để \(\Delta\)song song với Oy thì \(\hept{\begin{cases}m-2=0\\m-3\ne0\end{cases}\Rightarrow m=2}\)

Để \(\Delta\)song song với đt \(y=x\)\(\Rightarrow\hept{\begin{cases}m-2=1\\m-3=1\end{cases}\Rightarrow\hept{\begin{cases}m=3\\m=4\end{cases}\left(l\right)}}\)

Vậy không tồn tại m để \(\Delta\)song song với đt \(y=x\)

8 tháng 12 2019

Làm ý c) thôi ạ

9 tháng 4 2017

- Bảng giá trị:

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

- Vẽ đồ thị:

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Đường thẳng qua B(0; 4) song song với Ox cắt đồ thị tại hai điểm M, M' (xem hình). Từ đồ thị ta có hoành độ của M là x = 4, của M' là x = - 4.

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9