Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi A,B lần lượt là giao của (d) với Ox,Oy
=>\(A\left(-\dfrac{1}{m^2+1};0\right);B\left(0;1\right)\)
=>OA=1/|m^2+1|; OB=1
Theo đề, ta có: 1/2*OA*OB=1/8
=>OA*OB=1/4
=>1/|m^2+1|=1/4
=>m^2+1=4
=>m^2=3
hay \(m=\pm\sqrt{3}\)
Giải thích các bước giải:
a,Thay m=3m=3 vào (d)(d) ta đc: y=2x−3y=2x-3
có đường thẳng (d)(d) đi qua điểm B(0;−3)B(0;-3) và điểm A(32;0)A(32;0)
Có tam giác tạo bởi (d)(d) và 2 trục tọa độ là ΔOABΔOAB
Có OA=∣∣∣32∣∣∣=32;OB=|−3|=3OA=|32|=32;OB=|-3|=3
→SOAB=12.OA.OB=12.3/2.3=94(đvdt)→SOAB=12.OA.OB=12.3/2.3=94(đvdt)
Vậy SOAB=94đvdtSOAB=94đvdt
b,Để (d)(d) cắt đt y=−x+1y=-x+1 ⇔m−1≠−1⇔m-1≠-1
⇔m≠0⇔m≠0
Để (d) cắt đt y=−x+1y=-x+1 tại điểm có hoành độ bằng −2-2
Thay x=−2x=-2 vào 2 công thức hàm số ta đc hpt:
{y=(m−1).(−2)−my=2+1=3{y=(m−1).(−2)−my=2+1=3
→{3=−2m+2−my=3{3=−2m+2−my=3
↔{−3m=1y=3{−3m=1y=3
↔{m=−13y=3{m=−13y=3
→m=−13→m=-13(thỏa mãn)
Vậy m=−13m=-13
cắt hai trục tọa độ tao thành tam giác ⇔ m ≠≠0
Gọi (d) cắt Ox, Oy lần lượt tại A, B
⇒⇒A( 2m2m; 0)⇒⇒OA= trị tuyệt đối của 2m2m
=> B(0; -2) => OB= trị tuyệt đối của -2
xét tam giác cân AOB có AOB= 90 độ
OA=OB
=> trị tuyệt đố của 2m2m= trị tuyệt đối của -2
TH1: 2m2m=2
<=> 2=2m
<=> m=1 (t/m)
TH2 2m2m= -2
<=> 2=-2m
<=>m=-1(t/m)
Vậy để d cắt 2 trục tọa độ tạo thành tam giác cân thì m=1 hoặc m=-1
Giao điểm A của (d) với Ox có tọa độ:
\(y=0\Rightarrow x=-\frac{1}{m^2+2}\Rightarrow OA=\left|-\frac{1}{m^2+2}\right|=\frac{1}{m^2+2}\)
Giao điểm B của (d) với Oy có tọa độ:
\(x=0\Rightarrow y=1\Rightarrow OB=1\)
\(\Rightarrow S_{OAB}=\frac{1}{2}OA.OB=\frac{1}{2}.\frac{1}{m^2+2}=\frac{1}{8}\)
\(\Leftrightarrow m^2+2=4\Rightarrow m^2=2\Rightarrow m=\pm2\)
Gọi A và B lần lượt là giao điểm của d với Ox và Oy
\(\Rightarrow A\left(-\dfrac{1}{m^2+2};0\right)\) ; \(B\left(0;1\right)\) \(\Rightarrow OA=\dfrac{1}{m^2+2}\) ; \(OB=1\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{8}\Leftrightarrow OA.OB=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{m^2+2}=\dfrac{1}{4}\Rightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)