K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 10 2021

Để ĐTHS cắt cả 2 trục tọa độ \(\Rightarrow m\ne0\)

Khi đó ta có: giao điểm với trục hoành: \(mx+2=0\Rightarrow x=-\dfrac{2}{m}\)

Giao điểm với trục tung: \(y=m.0+2=2\)

a. \(A\left(-\dfrac{2}{m};0\right)\Rightarrow OA=\left|x_A\right|=\left|\dfrac{2}{m}\right|\)

\(B\left(0;2\right)\Rightarrow OB=\left|y_B\right|=2\)

\(OA=OB\Rightarrow\left|\dfrac{2}{m}\right|=2\Rightarrow m=\pm1\)

b. \(C\left(-\dfrac{2}{m};0\right);D\left(0;2\right)\Rightarrow\left\{{}\begin{matrix}OC=\left|\dfrac{2}{m}\right|\\OD=2\end{matrix}\right.\)

\(tanC=\dfrac{OD}{OC}=\left|m\right|=2\Rightarrow m=\pm2\)

Để tìm m để đồ thị hàm số cắt hai trục Ox và Oy tại A và B sao cho chu vi tam giác OAB là 3 + căn 5, ta cần xác định tọa độ của A và B.

Điểm A nằm trên trục Ox, nên tọa độ của A là (x_A, 0). Thay vào phương trình hàm số y = mx + 2, ta có:

0 = mx_A + 2
=> mx_A = -2
=> x_A = -2/m

Điểm B nằm trên trục Oy, nên tọa độ của B là (0, y_B). Thay vào phương trình hàm số y = mx + 2, ta có:

y_B = m*0 + 2
=> y_B = 2

Chu vi tam giác OAB được tính bằng công thức chu vi tam giác:

chu_vi = AB + OA + OB

Với OA = x_A và OB = y_B, ta có:

chu_vi = AB + x_A + y_B

chu_vi = AB + (-2/m) + 2

chu_vi = AB - (2/m) + 2

Theo đề bài, chu vi tam giác OAB là 3 + căn 5, nên ta có:

3 + căn 5 = AB - (2/m) + 2

căn 5 = AB - (2/m) + 1

AB = căn 5 + (2/m) - 1

Ta đã có tọa độ của A và B, và chu vi tam giác OAB. Giờ ta sẽ tính độ dài AB:

AB = căn((x_A - 0)^2 + (y_B - 0)^2)

AB = căn((-2/m)^2 + 2^2)

AB = căn(4/m^2 + 4)

AB = căn(4(1/m^2 + 1))

AB = 2căn(1/m^2 + 1)

So sánh với công thức đã tính được trước đó:

AB = căn 5 + (2/m) - 1

Ta có:

2căn(1/m^2 + 1) = căn 5 + (2/m) - 1

Bình phương cả hai vế của phương trình:

4(1/m^2 + 1) = 5 + 4/m^2 + 1 - 4/m

4/m^2 + 4 = 6 + 4/m^2 - 4/m

8/m^2 = 2 - 4/m

Nhân cả hai vế của phương trình cho m^2:

8 = 2m^2 - 4

2m^2 = 12

m^2 = 6

m = ±√6

Vậy, để đồ thị hàm số cắt hai trục Ox và Oy tại A và B sao cho chu vi tam giác OAB là 3 + căn 5, ta có hai giá trị của m: √6 và -√6.

8 tháng 8 2023

chắc đúng không bạn

8 tháng 1 2023

H/s cắt `Ox` tại `A=>y=0=>0=(m+1)x+2<=>x=-2/[m+1]=>OA=|[-2]/[m+1]|`

H/s cắt `Oy` tại `B=>x=0=>y=2=>OB=|2|=2`

Để `\triangle AOB` cân `=>OA=OB`

     `<=>|[-2]/[m+1]|=2`

     `<=>|-2|=2|m+1|`

     `<=>|m+1|=1<=>[(m+1=1),(m+1=-1):}<=>[(m=0),(m=-2):}`

1 tháng 3 2020

-2 -1 0 1 2 3 4 1 2 3 -1 -2 (0,2) (1,0) H/ả chỉ mang t/c m.họa

a, Khi \(m=-1\Rightarrow y=-2x+2\)

b, Ta có: \(d ∩ Ox\) \(=A\left(-\frac{2}{m-1},0\right),\) \(d∩Oy=B(0,2)\)

Để \(\Delta OAB\) vuông cân:

\(\Rightarrow OA=OB\Rightarrow|-\frac{2}{m-1}|=|2|\)

\(\Rightarrow|\frac{2}{m-1}|=2\)

\(\Rightarrow|m-1|=1\)

\(\Rightarrow m-1=1\)

\(\Rightarrow m=2\)

Hoặc: \(m-1=-1\)

\(\Rightarrow m=0\)

25 tháng 11 2016

a) (m-1)=1=> m=2 

b)x=0=> y=m+1     => A(0,m+1)

y=0=> x=\(\frac{m+1}{1-m}\)=> B(-3,\(\frac{1+m}{1-m}\))

...............................................

vuong can => m+1=\(\frac{1+m}{1-m}\)

1-m^2=1+m=> m^2+m=0=> m=0 hoac m=-1