\(y=x^4-2mx^2+2m+m^4\) có 3 điểm cực trị là đỉn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 8 2021

\(y'=4x^3-4mx=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2=m\end{matrix}\right.\)

Hàm có 3 cực trị khi \(m>0\)

Gọi 3 cực trị là A; B; C với \(\left\{{}\begin{matrix}A\left(0;m^4+2m\right)\\B\left(\sqrt{m};2m\right)\\C\left(-\sqrt{m};2m\right)\end{matrix}\right.\)

Tam giác ABC luôn cân tại A, gọi H là trung điểm BC \(\Rightarrow H\left(0;2m\right)\)

\(AH=\left|y_A-y_H\right|=m^4\) ; \(BC=\left|x_B-x_C\right|=2\sqrt{m}\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.m^4.2\sqrt{m}=4\)

\(\Leftrightarrow m^9=16\Rightarrow m=\sqrt[3]{2}\)

22 tháng 4 2016

Ta có \(y'=4x^3-4mx=4x\left(x^2-m\right);y'=0\Leftrightarrow x=0\) hoặc \(x^2=m\)

Hàm số có 3 điểm cực trị \(\Leftrightarrow\) phương trình \(y'=0\) có 3 nghiệm phân biệt là \(x=0;x=\pm\sqrt{m}\) suy ra đồ thị của hàm số có 3 điểm cực trị là \(A\left(0;m^2-m\right);B\left(-\sqrt{m};-m\right);\overrightarrow{AB}=\left(-\sqrt{m};-m^2\right);\overrightarrow{AC}=\left(\sqrt{m;}-m^2\right)\)

Do đó \(AB=AC=\sqrt{m^4+m}\) nên yêu cầu bài toán được thỏa mãn 

\(\Leftrightarrow\widehat{BAC}=120^0\Leftrightarrow\left(\overrightarrow{AB};\overrightarrow{AC}\right)=120^0\)\(\Leftrightarrow\frac{\overrightarrow{AB}\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|\left|\overrightarrow{AC}\right|}=\frac{1}{2}\)

                           \(\Leftrightarrow\frac{-\left(m\right)+m^4}{m+m^4}=-\frac{1}{2}\Leftrightarrow2m^4-2m=-m-m^4\)

                          \(\Leftrightarrow3m^4-m=0\Leftrightarrow m\left(3m^3-1\right)=0\Leftrightarrow m=0\) hoặc \(m=\frac{1}{\sqrt[3]{3}}\)

Kết hợp với điều kiện (*) ta có giá trị cần tìm là \(m=\frac{1}{\sqrt[3]{3}}\)

23 tháng 4 2016

Đáp số : \(m=-\frac{1}{\sqrt[3]{3}};m=-\sqrt[3]{\left(2+\sqrt{3}\right)^2}\)

23 tháng 4 2016

Đáp số : \(m=\frac{1}{\sqrt[3]{3}}\)

28 tháng 3 2016

Ta có : \(y'=4x^3+4mx;y'=0\Leftrightarrow4x\left(x^2+m\right)=0\Leftrightarrow\begin{cases}x=0\\x=\pm\sqrt{-m}\end{cases}\) (m<0)

Gọi \(A\left(0;m^2+m\right);B\left(\sqrt{-m;}m\right);C\left(-\sqrt{-m};m\right)\) là các điểm cực trị

\(\overrightarrow{AB}=\left(\sqrt{-m},-m^2\right);\overrightarrow{AC}=\left(-\sqrt{-m},-m\right)\)

Tam giác ABC cân tại A nên góc 120 độ chính là góc A

\(\widehat{A}=120^0\Leftrightarrow\cos A=-\frac{1}{2}\Leftrightarrow\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=-\frac{1}{2}\)

                \(\Leftrightarrow\frac{-\sqrt{-m}.\sqrt{-m}+m^4}{m^4-m}=-\frac{1}{2}\)

                \(\Leftrightarrow\frac{m+m^4}{m^4-m}=-\frac{1}{2}\)

                \(\Leftrightarrow2m+2m^4=m-m^4\Leftrightarrow3m^4+m=0\)

                \(\Leftrightarrow\begin{cases}m=0\\m=-\frac{1}{\sqrt{3}}\end{cases}\) mà m=0 thì loại

Vậy \(m=-\frac{1}{\sqrt{3}}\) thỏa mãn bài toán

 

18 tháng 8 2020

Tại sao vectơ AC (- căn-m,-m)

26 tháng 3 2016

- Ta có \(y'=4x^3-4m^2x;y'=0\) \(\Leftrightarrow\begin{cases}x=0\\x^2=m^2\end{cases}\) Điều kiện có 3 điểm cực trị : \(m\ne0\)

- Tọa độ 3 điểm cực trị : A (0;1); B \(\left(-m;1-m^4\right),C\left(m;1-m^4\right)\)

- Chứng minh tam giác ABC cân đỉnh A. Tọa độ trung điểm I của BC là I \(\left(0;1-m^4\right)\)

\(S_{ABC}=\frac{1}{2}AI.BC=m^4\left|m\right|=\left|m\right|^5=32\Leftrightarrow m=\pm2\left(tm\right)\)

23 tháng 4 2016

Hàm số xác định trên R

Ta có \(y'=4x^3-4m^2x=4x\left(x^2-m^2\right)\)

Suy ra hàm số có 3 cực trị \(\Leftrightarrow m\ne0\)

Khi đó tọa độ các điểm cực trị của đồ thị hàm số là \(A\left(0;1\right);B\left(m;1-m^4\right);C\left(-m;1-m^4\right)\)

Ta thấy AB = AC nên tam giác ABC vuông cân \(\Leftrightarrow AB^2+AC^2=BC^2\)

                                                                     \(\Leftrightarrow2\left(m^2+m^8\right)=4m^2\Rightarrow m=\pm1\)

Vậy \(m=\pm1\) là giá trị cần tìm

26 tháng 3 2016

xem ở ví dụ 1 câu 2 nhé ! banhqua