Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot1+a+4=4-10-b\\2-a+4=25-25-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-6-4-2=-12\\-a+b=-6\end{matrix}\right.\)
=>a=-3; b=-9
y'=mx² -2(m+1)x +(m-5) (*)
Đặt điều kiện để hs có 2 cực trị ( tức y=(*)=0 có 2 nghiệm pb) <=> m≠0 và ∆' >0
∆' >0
<=> (m+1)² -m(m-5) >0
<=> m² + 2m + 1 - m² +5m>0
<=>m > -1/7
=> ĐK : m> -1/7 và m≠0
Sau đó áp dụng tổng tích thế vào bpt để giải:
x1.x2 = c/a =(m-5)/m
x1+ x2=-b/a = 2(m+1)/m
thế vào bpt:
x1.x2 +3(x1+ x2) -4 <0
<=> (m-5)/m +6(m+1)/m -4 <0
<=> (3m+1)/m>0
do m ≠0 (ĐK) nên ta suy ra:
(3m+1)m>0
<=> m>0 hay m< -1/3
kết hợp điều kiện => m>0
a) Giải:
\(f\left(x\right)=\left(m^2-25\right)x^4+\left(20+4\right)x^3+7x^2-9\) là đa thức bậc \(3\) theo biến \(x\) khi:
\(\left\{{}\begin{matrix}m^2-25=0\\20+4m\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=\pm5\\m\ne-5\end{matrix}\right.\)
Vậy \(m=5\) thì \(f\left(x\right)\) là đa thức bậc \(3\) theo biến \(x\)
b) Ta có:
\(g\left(x\right)=16x^4-72x^2+90\)
\(=\left(4x^2\right)^2-2.4x^2.9+9^2+9\)
\(=\left(4x^2-9\right)^2+9\)
Với mọi giá trị của \(x\) ta có: \(\left(4x^2-9\right)^2\ge0\)
\(\Rightarrow g\left(x\right)=\left(4x^2-9\right)^2+9\ge9\)
Dấu "=" xảy ra khi \(\Leftrightarrow\left(4x^2-9\right)^2=0\Leftrightarrow x=\pm\dfrac{3}{2}\)
Vậy GTNN của đa thức \(g\left(x\right)\) là \(9\) tại \(x=\pm\dfrac{3}{2}\)
1) a) x=0 hoặc x=4 hoặc x=-4
b) x=-3 hoặc x=1 hoặc x=-1
c) x=1 hoặc x=4
d) x=1 hoặc x=-1/6
2) a) m(x) = 3x
b) x=-2 hoặc x=-1
1) A(x) = 3.1/3^2 - 4.1/3 + 1 = 1/3 - 4/3 + 1 = -1 + 1 = 0
⇒ x= 1/3 có là nghiệm A(x)
2)
a) f(x) = 3/2x - 1 ⇒ 3/2x - 1 = 0
3/2x = 1
x = 1:3/2
x= 2/3
Vậy x = 2/3 là nghiệm f(x)
b) g(x) = x^2 - 3x ⇒ x^2 - 3x = 0
⇒ x(x-3) = 0
⇒ x=0 hoặc x-3=0
⇒ x=0 hoặc x= 3
Vậy x=0 hoặc x=3 là nghiệm g(x)
1)Thay \(x=\frac{1}{3}\) vào \(A\left(x\right)\), có:
\(A\left(\frac{1}{3}\right)=3\frac{1}{3}^2-4\frac{1}{3}+1=0\)
Vậy...
2)
a) Xét \(f\left(x\right)=0\), có:
\(\Leftrightarrow\frac{3}{2}x-1=0\\ \Leftrightarrow x=\frac{2}{3}\)
Vậy...
b) Xét \(g\left(x\right)=0\), có:
\(\Leftrightarrow x^2-3x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy..
Bài 1:
Thay x=1 vào đa thức F(x) ta được:
F(1) = 14+2.13-2.12-6.1+5 = 0
=> x=1 là nghiệm của đa thức F(x)
Tương tự ta thế -1; 2; -2 vào đa thức F(x)
Vậy x=1 là nghiệm của đa thức F(x)
\(x.f\left(x+2\right)=\left(x^2-9\right).f\left(x\right)\)
+ Thay \(x=3\) vào đa thức \(f\left(x\right)\) ta được:
\(3.f\left(3+2\right)=\left(3^2-9\right).f\left(3\right)\)
\(\Rightarrow3.f\left(5\right)=\left(9-9\right).f\left(3\right)\)
\(\Rightarrow3.f\left(5\right)=0.f\left(3\right)\)
\(\Rightarrow3.f\left(5\right)=0\)
\(\Rightarrow f\left(5\right)=0:3\)
\(\Rightarrow f\left(5\right)=0.\)
Vậy \(x=5\) là nghiệm của đa thức \(f\left(x\right)\) (1).
+ Thay \(x=-3\) vào đa thức \(f\left(x\right)\) ta được:
\(-3.f\left[\left(-3\right)+2\right]=\left[\left(-3\right)^2-9\right].f\left(-3\right)\)
\(\Rightarrow-3.f\left(-1\right)=\left(9-9\right).f\left(-3\right)\)
\(\Rightarrow-3.f\left(-1\right)=0.f\left(-3\right)\)
\(\Rightarrow-3.f\left(-1\right)=0\)
\(\Rightarrow f\left(-1\right)=0:\left(-3\right)\)
\(\Rightarrow f\left(-1\right)=0.\)
Vậy \(x=-1\) là nghiệm của đa thức \(f\left(x\right)\) (2).
+ Thay \(x=0\) vào đa thức \(f\left(x\right)\) ta được:
\(0.f\left(0+2\right)=\left(0^2-9\right).f\left(0\right)\)
\(\Rightarrow0.f\left(2\right)=\left(0-9\right).f\left(0\right)\)
\(\Rightarrow0=-9.f\left(0\right)\)
\(\Rightarrow f\left(0\right)=0:\left(-9\right)\)
\(\Rightarrow f\left(0\right)=0.\)
Vậy \(x=0\) là nghiệm của đa thức \(f\left(x\right)\) (3).
Từ (1), (2) và (3) \(\Rightarrow\) Đa thức \(f\left(x\right)\) có ít nhất 3 nghiệm đó là: \(x=3;x=-3\) và \(x=0\left(đpcm\right).\)
Chúc bạn học tốt!
Tham khảo :
Xét với x=3x=3 thì : 3.f(5)=(32−9).f(3)3.f(5)=(32−9).f(3)
⇒3.f(5)=0⇒f(5)=0⇒3.f(5)=0⇒f(5)=0 (*)
Xét với x=0⇔0=−9.f(0)⇒f(0)=0x=0⇔0=−9.f(0)⇒f(0)=0
nên x=0x=0 là 1 nghiệm của đa thức f(x)f(x) (1)
Xét với x=−3⇔3.f(−1)=0⇒f(−1)=0x=−3⇔3.f(−1)=0⇒f(−1)=0
nên x=−1x=−1 là 1 nghiệm của đa thức f(x)f(x) (2)
Từ (*)(1)(2) ⇒⇒ f(x)f(x) có ít nhất 3 nghiệm.
Bài 1:
ta có M(x)=a.x2+5.x-3 và x=\(\frac{1}{2}\)
Cho M=0
\(\Rightarrow\)a.1/22+5.1/2-3=0
a.1/4+5/2-3=0
a.1/4-1/2=0
a.1/4=1/2
a=1/2:1/4
a=2
Bài 2
Q(x)=x4+3.x2+1
=x2.x2+1,5.x2+1,5.x2+1,5.1,5-1,25
=x2.(x2+1,5)+1,5.(x2+1,5)-1,25
=(x2+1,5)(x2+1,5)-1,25
\(\Rightarrow\)(x2+1,5)2 \(\ge\)0 với \(\forall\)x
\(\Rightarrow\)(x2+1,5)2-1,25\(\ge\)1,25 > 0
Vậy đa thức Q ko có nghiệm
thay x=1 vào chỗ nào có x là ra thôi
Vì x = 1 là nghiệm của đa thức trên nên
Thay x = 1 vào đa thức trên ta được :
Đặt \(F\left(x\right)=m^3+4\left(m+2\right)-3=0\)
\(\Leftrightarrow m^3+4m+5=0\Leftrightarrow\left(m+1\right)\left(m^2-m+5\ne0\right)=0\Leftrightarrow m=-1\)
Vậy với x = 1 thì m = -1