Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có : \(\Delta'=m^2-2m+1-m^2+m\)
\(=-m+1\)
để phương trình có đúng một nghiệm, thì : \(\Delta'=0\)\(\Leftrightarrow-m+1=0\)\(\Rightarrow m=1\)
c) Ta có: \(\Delta'=m^2-\left(m-3\right)\left(m-6\right)\)
\(=m^2-m^2+6m+3m-18\)
\(=9m-18\)
\(=9\left(m-2\right)\)
Để phương trình có 2 nghiệm phân biệt thì : \(\Delta'>0\)\(\Leftrightarrow9\left(m-2\right)>0\)
\(\Leftrightarrow m-2>0\)\(\Leftrightarrow m>2\)
c, phương trình c có 2 nghiệm \(\leftrightarrow\leftrightarrow\)\(\Delta\)= -36m + 72>0
<=> m <2
b,phương trình c có 1 nghiệm phân biệt khi và chỉ khi: \(\Delta\)= -4m+4=0
<=> m= 1
Để phương trình đã cho có 2 nghiệm buộc:
\(\Delta\)'\(\ge0\)
\(\Leftrightarrow\left(-m\right)^2+m+3=0\\ \Leftrightarrow\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\veebar m\)
Do đó với mọi m thì phương trình đã cho có 2 nghiệm
Theo hệ thức viet ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1.x_2=\dfrac{c}{a}=-m-3\end{matrix}\right.\)
Từ giả thuyết \(\left|x_1\right|=\left|x_2\right|\\ \Leftrightarrow x_1^2=x_2^2\\ \Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)=0\\ \Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}.\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\sqrt{\left(2m\right)^2+4m+12}.2m=0\\ \Leftrightarrow m=0\)(vì căn của 4m^2+4m+12>0)
1: ĐKXĐ: x<>0
\(\Leftrightarrow x^2-6\left(m-1\right)x+9m^2=0\)
\(\text{Δ}=\left(6m-6\right)^2-4\cdot1\cdot9m^2\)
\(=36m^2-72m+36-36m^2=-72m+36\)
Để pt vô nghiệm thì -72m+36<0
=>-72m<-36
hay m>1/2
2:ĐKXD: x<>9/8
\(\Leftrightarrow2x^2-\left(m+1\right)x+\dfrac{1}{8}m^2+1=0\)
\(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(\dfrac{1}{8}m^2+1\right)\)
\(=m^2+2m+1-m^2-8=2m-7\)
Để pt vô nghiệm thì 2m-7<0
hay m<7/2
a/ \(\Delta'=m^2-\left(m^2-2m-3\right)=2m+3\)
Do m nguyên dương \(\Rightarrow\Delta'>0\) nên pt luôn có nghiệm.
Để pt có nghiệm nguyên \(\Rightarrow\Delta'\) là số chính phương. Mà \(2m+3\) lẻ \(\Rightarrow\Delta'\) là số chính phương lẻ
Đặt \(2m+3=\left(2k+1\right)^2\) với \(k\in N;k>0\)
\(\Rightarrow2m+3=4k^2+4k+1\Rightarrow2m=4k^2+4k-2\Rightarrow m=2k^2+2k-1\)
Vậy với mọi m có dạng \(m=2k^2+2k-1\) trong đó k là số tự nhiên khác 0 thì pt luôn có nghiệm nguyên
b/ \(\Delta'=\left(m+1\right)^2-\left(m-1\right)\left(m+7\right)=8-4m\ge0\Rightarrow m\le2\)
Mà m nguyên dương \(\Rightarrow m=1\) hoặc \(m=2\)
Với \(m=1\Rightarrow4x+8=0\Rightarrow x=-2\) nguyên (t/m)
Với \(m=2\Rightarrow x^2+6x+9=0\Leftrightarrow\left(x+3\right)^2=0\Rightarrow x=-3\) nguyên (t/m
Vậy m=1 hoặc m=2
Câu c/ bạn tự giải nốt
\(a,\) \(\Delta=b^2-4ac=\left(-4\right)^2-4.\left(-3m-1\right)=16+12m+4=12m+20\)
Để pt trên có nghiệm thì \(\Delta\ge0\Rightarrow12m+20\ge0\Rightarrow m\ge-\dfrac{5}{3}\)
\(b,\Delta=b^2-4ac=\left(-2m\right)^2-4\left(m-2\right)\left(m+3\right)\)
\(=4m^2-4\left(m^2+3m-2m-6\right)\)
\(=4m^2-4m^2-4m+24\)
\(=-4m+24\)
Để pt trên có nghiệm thì \(\Delta\ge0\Rightarrow-4m+24\ge0\Rightarrow m\le6\)