K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2016

1/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=x+\sqrt{\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}}\)

\(=x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=x+\left|\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right|=\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}\)

\(=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)

\(\Rightarrow m=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)

Để pt trên có nghiệm thì \(\hept{\begin{cases}m>0\\\sqrt{m}-\frac{1}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>0\\m\ge\frac{1}{4}\end{cases}}\Leftrightarrow m\ge\frac{1}{4}\)

Vậy với \(m\ge\frac{1}{4}\) thì pt trên có nghiệm.

Phương trình trên chỉ có một nghiệm thôi nhé, đó là \(x=m-\sqrt{m}\) với \(m\ge\frac{1}{4}\)

3 tháng 12 2016

cậu lm đc bài 2 câu a ko.. mk còn mỗi câu đấy 

AH
Akai Haruma
Giáo viên
11 tháng 6 2021

Lời giải:
a) Để 2 pt cùng có nghiệm thì:

\(\left\{\begin{matrix} \Delta'_1=16-4m\geq 0\\ \Delta_2=1+16m\geq 0\end{matrix}\right.\Leftrightarrow 4\geq m\geq \frac{-1}{16}\)

b) 

Gọi $2a,a$ lần lượt là nghiệm của PT $(1)$ và PT $(2)$:

Ta có:

\(\left\{\begin{matrix} (2a)^2-8.2a+4m=0\\ a^2+a-4m=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2-4a+m=0\\ a^2+a-4m=0\end{matrix}\right.\)

\(\Rightarrow 5a=5m\Leftrightarrow a=m\)

Thay vô: $m^2+m-4m=0\Leftrightarrow m^2-3m=0$

$\Leftrightarrow m=0$ hoặc $m=3$

10 tháng 7 2016

Nhẩm nghiệm ta được x = 2 là nghiệm của pt

Theo sơ đồ Hoc-ne ta được: x3 - 5x2 + (2x + 5)x - 4m + 2 = (x - 2)(x2 - 3x + 2m - 1) = 0

Đặt x2 - 3x + 2m - 1 là pt (*)

Để pt đề cho có 3 nghiệm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 2

\(\Rightarrow\hept{\begin{cases}\Delta>0\\2^2-3.2+2m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}13-8m>0\\2m-3\ne0\end{cases}\Rightarrow}\hept{\begin{cases}m< \frac{13}{8}\\m\ne\frac{3}{2}\end{cases}}}\)

                                           Vậy \(m< \frac{13}{8}\) và \(m\ne\frac{3}{2}\) thì pt đề cho có 3 nghiệm phân biệt

10 tháng 7 2016

sơ đồ hoocs ne là j v

2 tháng 4 2021

thay x=4 vào phương trình tìm ra m rồi lại thay m vào phương trình tìm nghiệm còn lại

cùng dấu thì    x1 + x2>0                            Khác dấu thì       a vs c trái dấu  (có a > hoặc = 0      suy ra 4m<0     suy ra m<0   )

                        x1 x x2>0

                         Đenta >0

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)