Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hàm trên là hàm bậc nhất thì cần điêu kiện sau :
\(\hept{\begin{cases}m^2-5m+6=0\\m-1\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m-2\right)\left(m-3\right)=0\\m\ne1\end{cases}}\)
Do đó : \(m=2\) hoặc \(m=3\)
Chúc bạn học tốt !!!
Để hàm số đã cho đồng biến thì \(m^2-5m-6>0\)\(\Leftrightarrow m^2+m-6m-6>0\)\(\Leftrightarrow m\left(m+1\right)-6\left(m+1\right)>0\)\(\Leftrightarrow\left(m+1\right)\left(m-6\right)>0\)
Trường hợp 1: \(\hept{\begin{cases}m+1>0\\m-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-1\\m>6\end{cases}}\Rightarrow m>6\)
Trường hợp 2: \(\hept{\begin{cases}m+1< 0\\m-6< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -1\\m< 6\end{cases}}\Rightarrow m< -1\)
Vậy để hàm số đã cho đồng biến thì \(m>6\)hoặc \(m< -1\)
Để hàm số đã cho nghịch biến thì \(m^2-5m-6< 0\)\(\Leftrightarrow\left(m+1\right)\left(m-6\right)< 0\)
Trường hợp 1: \(\hept{\begin{cases}m+1< 0\\m-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -1\\m>6\end{cases}}\)(loại vì m không thể vừa nhỏ hơn -1 lại vừa lớn hơn 6)
Trường hợp 2: \(\hept{\begin{cases}m+1>0\\m-6< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-1\\m< 6\end{cases}}\Rightarrow-1< m< 6\)
Vậy để hàm số đã cho nghịch biến thì \(-1< m< 6\)
m=2. Khi đó hàm số trở thành: f(x)= -4x-3
Khi đó hàm f(x) luôn nghịch biến vì hệ số a=-4<0
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2
a/ Để hàm đã cho là bậc nhất:
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-5m+6=0\\4-m\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\\m\ne4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)
Khi đó \(4-m< 0\) nên hàm nghịch biến
b/ Để hàm là bậc nhất
\(\Leftrightarrow m^2-5m+4\ne0\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne4\end{matrix}\right.\)
- Nếu \(m^2-5m+4>0\Leftrightarrow\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\) thì hàm đồng biến
- Nếu \(m^2-5m+4< 0\Leftrightarrow1< m< 4\) thì hàm nghịch biến