\(\frac{2m-7}{m+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2017

\(A=\frac{2m-7}{m+1}=\frac{2m+2-9}{m+1}=\frac{2\left(m+1\right)-9}{m+1}=2-\frac{9}{m+1}\)

Để \(2-\frac{9}{m+1}\) là số nguyên <=> \(\frac{9}{m+1}\) là Số nguyên

=> m + 1 ∈ Ư(9) = { ± 1; ± 3; ± 9 }

m + 1- 9   - 3    - 1    1     3     9      
m- 10- 4- 2028

 Vậy m ∈ { - 10 ; - 4 ; - 2 ; 0 ; 2 ; 8 }

16 tháng 2 2017

Để A nguyên <=> \(\frac{2m-7}{m+1}\in Z\Leftrightarrow\frac{2\left(m+1\right)-9}{m+1}=2-\frac{9}{m+1}\in Z\Leftrightarrow\frac{9}{m+1}\in Z\)

Hay m+1 là U(9)

Ta có bảng sau:

m+1-9-3-1139
m-10-4-2028

Vậy m=...

3 tháng 11 2017

a) \(x\ne2;-2;-4\)

b) và c) thì bạn rút gọn M rồi tính

4 tháng 11 2017

cách nhân ntn ạ 

9 tháng 12 2018

a ) ĐKXĐ : \(x\ne\pm2\)

Ta có : \(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{x^2-4}\)

\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x+2}{x-2}\)

b ) Để \(M\in Z\Leftrightarrow\frac{x+2}{x-2}\in Z\Leftrightarrow x+2⋮x-2\)

\(\Leftrightarrow x-2+4⋮x-2\)

\(\Leftrightarrow4⋮x-2\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\left(x\in Z\Rightarrow x-2\in Z\right)\)

\(\Leftrightarrow x\in\left\{3;1;4;0;6;-2\right\}\)

Vậy \(M\in Z\Leftrightarrow x\in\left\{3;1;4;0;6;-2\right\}\)

:D

9 tháng 12 2018

b ) \(x\in\left\{3;1;4;0;6\right\}\left(x\ne-2\right)\)

Mik quên :D 

16 tháng 12 2016

a. M=\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{x^2-4}\)

\(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\) MC = (x-2)(x+2)

\(M=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(M=\frac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(M=\frac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}\)

\(M=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)

\(M=\frac{x+2}{x-2}\)

b. Ta có: \(M=\frac{x+2}{x-2}=\frac{x-2+2+2}{x-2}=\frac{x-2+4}{x-2}=\frac{x-2}{x-2}+\frac{4}{x-2}=1+\frac{4}{x-2}\)

Để M đạt giá trị nguyên thì \(\frac{4}{x-2}\) cũng phải đạt giá trị nguyên

\(\Leftrightarrow\left(x-2\right)\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow x=\left\{3;1;4;0;6;-2\right\}\)

16 tháng 12 2016

a) \(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow M=\frac{x+2-\left(x-2\right)+x^2+4x}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow M=\frac{x+2-x+2+x^2+4x}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow M=\frac{x^2+4x+4}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\frac{x+2}{x-2}\)

b) \(\frac{x+2}{x-2}=\frac{x-2+4}{x-2}=\frac{x-2}{x-2}+\frac{4}{x-2}=1+\frac{4}{x-2}\)

\(\Rightarrow x-2\inƯ_4\left\{-4;-2;-1;1;2;4\right\}\)

Ta có :

\(x-2=-4\Rightarrow x=-2\) (loại)

\(x-2=-2\Rightarrow x=0\)

\(x-2=-1\Rightarrow x=1\)

\(x-2=1\Rightarrow x=3\)

\(x-2=2\Rightarrow x=4\)

\(x-2=4\Rightarrow x=6\)

Vậy: Các giá trị của x để \(M\in Z\) là:

\(x=0;1;3;4;6\)

 

 

16 tháng 12 2016

a) \(Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}\left(ĐK:x\ne-\frac{1}{2}\right)\)

\(=\frac{x+3-x+7}{2x+1}=\frac{10}{2x+1}\)

b) Để Q nguyên \(\Leftrightarrow\frac{10}{2x+1}\in Z\)

=> \(2x+1\inƯ\left(10\right)\)

=> \(2x+1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

Ta có bảng sau:

2x+11-12-24-410-10
x0-1\(\frac{1}{2}\) (loại)\(-\frac{3}{2}\)(loại)\(\frac{3}{2}\)(loại)\(-\frac{5}{2}\)(loại)\(\frac{9}{2}\)(loại)\(-\frac{11}{2}\)(loại)

Vậy \(x\in\left\{0;-1\right\}\)

27 tháng 11 2017

Cái bảng chỗ 4 vs -4 sai r nhé
Chỗ đấy phải là 5 vs -5 chứ

11 tháng 7 2018

\(M=\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}=\frac{\left(a^2-4\right)\left(a^2+4\right)}{a^4-4a^3+4a^2+4a^2-16a+16}=\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{a^2\left(a^2-4a+4\right)+4\left(a^2-4a+4\right)}\)

\(=\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{\left(a^2+4\right)\left(a-2\right)^2}=\frac{a+2}{a-2}=\frac{a-2+4}{a-2}=1+\frac{4}{a-2}\)

Để \(M\in Z\Leftrightarrow a-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Ta có bảng:

a - 21-12-24-4
a31406-2

Vậy...

a) \(p=\left(\frac{x^2-x}{x+1}\right)\left(\frac{4x-2x+2}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x-1\right)}{x+1}.\frac{2\left(x+1\right)}{x\left(x-1\right)}=2\)

b)\(m=\frac{x+2-\left(x-2\right)+x^2+4x}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x+2}{x-2}=1+\frac{4}{x-2}\)

Để m nguyên thì \(4⋮x-2\)

\(\Rightarrow x-2\in\left\{1,2,4,-1,-2,-4\right\}\)

\(\Leftrightarrow x\in\left\{3,4,6,1,0,-2\right\}\)

8 tháng 3 2020

\(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{x^2-4}\left(x\ne\pm2\right)\)

\(\Leftrightarrow M=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow M=\frac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow M=\frac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x+2}{x-2}\)

Để M có giá trị nguyên thì x+2 chia hết cho x-2

Ta có x+2=x-2+4

=> x-2+4 chia hết cho x-2

=>4 chia hết cho x-2

Vì x nguyên => x-2 nguyên

=> x-2 thuộc Ư (4)={-4;-2;-1;1;2;4}

Ta có bảng

x-2-4-2-1124
x-201346