K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2017

15 tháng 7 2022

C

3 tháng 1 2020

NV
12 tháng 6 2019

Áp dụng điều kiện có nghiệm của pt lượng giác bậc nhất, để pt đã cho vô nghiệm

\(\Leftrightarrow\left(2m+1\right)^2+\left(m+2\right)^2< \left(2m+3\right)^2\)

\(\Leftrightarrow5m^2+8m+5< 4m^2+12m+9\)

\(\Leftrightarrow m^2-4m-4< 0\)

\(\Leftrightarrow2-\sqrt{6}< m< 2+\sqrt{6}\)

\(\Rightarrow m=\left\{0;1;2;3;4\right\}\)

\(\Rightarrow\sum m=10\)

3 tháng 7 2019

AH
Akai Haruma
Giáo viên
1 tháng 3 2018

Lời giải:

Ta có:

\(\int ^{\frac{\pi}{2}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{\sin x}{(\sin x+\cos x)^3}dx+\int ^{\frac{\pi}{4}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx\)

\(=A+B\)

Xét riêng rẽ:

\(A=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{\sin^3 x}{(\sin x+\cos x)^3}.\frac{dx}{\sin ^2x}=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{1}{\left(\frac{\sin x+\cos x}{\sin x}\right)^3}d(-\cot x)\)

\(=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{1}{(\cot x+1)^3}d(-\cot x)=-\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{d(\cot x+1)}{(\cot x+1)^3}\)

\(=\left.\begin{matrix} \frac{\pi}{2}\\ \frac{\pi}{4}\end{matrix}\right|\frac{1}{2(\cot x+1)^2}=\frac{3}{8}\)

\(B=\int ^{\frac{\pi}{4}}_{0}\frac{\sin x+\cos x-\cos x}{(\sin x+\cos x)^3}dx\)\(=\int ^{\frac{\pi}{4}}_{0}\frac{ 1}{(\sin x+\cos x)^2}dx-\int ^{\frac{\pi}{4}}_{0}\frac{\cos x}{(\sin x+\cos x)^3}dx\)

\(=\int ^{\frac{\pi}{4}}_{0}\frac{1}{\left(\frac{\sin x+\cos x}{\cos x}\right)^2}.\frac{dx}{\cos ^2x}-\int ^{\frac{\pi}{4}}_{0}\frac{1}{\left(\frac{\sin x+\cos x}{\cos^3 x}\right)^3}.\frac{dx}{\cos ^2x}\)

\(=\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x)}{(\tan x+1)^2}-\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x)}{(\tan x+1)^3}\)

\(=\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x+1)}{(\tan x+1)^2}-\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x+1)}{(\tan x+1)^3}\)

\(=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{-1}{\tan x+1}+\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{1}{2(\tan x+1)^2}=\frac{1}{8}\)

Do đó: \(\int ^{\frac{\pi}{2}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}\)

Sở dĩ phải chia tích phân thành tổng nhỏ như vậy là do khi ta thực hiện chia sin x xuống dưới mẫu thì hàm số không liên tục trong đoạn \([\frac{\pi}{2}; 0]\)

2 tháng 4 2018

Dạ em cảm ơn ạ!

NV
14 tháng 3 2019

Đề thế này hả bạn?

\(A=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}dx\) (1)

Đặt \(\frac{\pi}{2}-x=t\Rightarrow dx=-dt;\left\{{}\begin{matrix}x=0\Rightarrow t=\frac{\pi}{2}\\x=\frac{\pi}{2}\Rightarrow t=0\end{matrix}\right.\)

\(A=\int\limits^0_{\frac{\pi}{2}}\frac{\sqrt{cost}}{\sqrt{cost}+\sqrt{sint}}\left(-dt\right)=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{cost}}{\sqrt{sint}+\sqrt{cost}}dt=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}dx\) (2)

Cộng vế với vế của (1) và (2):

\(2A=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}dx+\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}dx=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{sinx}+\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}dx=\int\limits^{\frac{\pi}{2}}_0dx=\frac{\pi}{2}\)

\(\Rightarrow A=\frac{\pi}{4}\)

b/ \(B=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{cosx}}{\sqrt{cosx}+\sqrt{sinx}}dx\)

Từ (2) ta thấy \(B=A=\frac{\pi}{4}\)

14 tháng 3 2019

Đúng rồi ạ. Mình cảm ơn ạ

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

Lời giải:

Ta có:

Để hàm \(y=m\sin x-n\cos x-3x\) nghịch biến trên R thì:

\(y'=m\cos x+n\sin x-3\leq 0, \forall x\in\mathbb{R}\)

\(\Leftrightarrow m\cos x+n\sin x\leq 3\), \(\forall x\in\mathbb{R}\)

\(\Rightarrow (m\cos x+n\sin x)_{\max}\le 3(*)\)

Ta thấy theo BĐT Bunhiacopxky:

\((m\cos x+n\sin x)^2\leq (m^2+n^2)(\cos ^2x+\sin ^2x)\)

hay \((m\cos x+n\sin x)^2\leq m^2+n^2\)

\(\Rightarrow m\cos x+n\sin x\leq \sqrt{m^2+n^2}\).

Do đó \((m\cos x+n\sin x)_{\max}=\sqrt{m^2+n^2}(**)\)

Từ (*) và (**) suy ra để \(y'\leq 0\) thì \(\sqrt{m^2+n^2}\leq 3\Leftrightarrow m^2+n^2\leq 9\)

Đáp án C.