Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)
Bài 1. Phương trình \(x^2-\left(m+5\right)x+3m+6=0\)
a. \(\Delta=\left(m+5\right)^2-4\left(3m+6\right)=m^2-2m+1=\left(m+1\right)^2\ge0\)
Vậy phương trình luôn có nghiệm.
b. Gọi các nghiệm của phương trình là \(x_1;x_2\). Để các nghiệm của phương trình là độ dài của các cạnh góc vuông của tam giác vuông có độ dài cạnh huyền là 5 thì \(x_1^2+x_2^2=25\)
Theo Viet ta có \(\hept{\begin{cases}x_1+x_2=m+5\\x_1.x_2=3m+6\end{cases}}\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(m+5\right)^2-2\left(3m+6\right)=m^2+4m+13=25\)
\(\Rightarrow m^2+4m-12=0\Rightarrow\orbr{\begin{cases}m=2\\m=-6\end{cases}}\)
Bài 2.
a. Để hai đồ thị có 1 điểm chung thì phương trình hoành độ giao điểm có 1 nghiệm duy nhất.
Xét phương trình hoành độ giao điểm: \(-x^2=4x-m\Leftrightarrow x^2+4x-m=0\)
Để phương trình có 1 nghiệm duy nhất thì \(\Delta'=0\Leftrightarrow2^2+m=0\Leftrightarrow m=-4\)
Bài 3. Phương trình \(x^2-5x+3m+1=0\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\Leftrightarrow\left(-5\right)^2-4\left(3m+1\right)=21-12m>0\Leftrightarrow m< \frac{7}{4}\)
Theo Viet \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3m+1\end{cases}}\)
Vậy \(\left|x_1^2-x_2^2\right|=15\Leftrightarrow\left(x_1+x_2\right)^2\left(x_1-x_2\right)^2=225\Leftrightarrow\left(x_1+x_2\right)^2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]=225\)
\(\Leftrightarrow25\left[25-4\left(3m+1\right)\right]=225\Leftrightarrow21-12m=9\Leftrightarrow m=1\left(tmđk\right)\)
Vậy m = 1.
Chú ý nhớ kĩ định lý Viet nhé, đây là một phần quan trọng đó em.
PT có 3 nghiệm phân biệt khi:
+\(\left(x^2-2m-4\left(m^2+1\right)\right)=0có1nghiệm\Rightarrow-4m^2-4=m^2\Leftrightarrow m=0\Leftrightarrow x=0\)
Và \(x^2-4x=0\Rightarrow x\left(x-4\right)=0\)có 2 nghiệm phân biệt khác 0 ( Loại)
+\(x^2-4x-2m\left(m^2+1\right)=0có1nghiem\Rightarrow-2m\left(m^2+1\right)=4\Leftrightarrow m^3+m+2=0\Rightarrow m=-1\Leftrightarrow x=2\)
Và \(x^2+2x-4\left(1+1\right)=0\) có 2 nghiệm phân biệt khác 2
\(x^2+2x-8=0\Leftrightarrow x=2;x=-4\) loại
Vậy Không có giá trị nào của m để pt trên có 3 nghiệm phân biệt
\(x^2+6x+5=0\)
<=>\(x^2+x+5x+5=0\)
<=>\(x\left(x+1\right)+5\left(x+1\right)=0\)
<=>\(\left(x+1\right)\left(x+5\right)=0\hept{\begin{cases}x+1=0< =>x=-1\\x+5=0< =>x=-5\end{cases}}\)bấm máy thử nghiệm đc mà .Bài này lớp 8 mà đâu phải lớp 9
x^2+6x+5=0
<=> x^2+x+5x+5=0
<=>x(x+1)+5(x+1)=0
<=> (x+5)(x+1)=0
=> x+5=0 hoặc x+1=0 <=> x=-5 hoặc x=-1
âu này làm như bt thôi
tthay nghiệm vào rồi tìm m
sau đó thay m vào tìm o còn lại
b, tìm đenta
=> đenta >=0
=> theo hệ thức viet
=> thay vào ot cần tìm m
hok tốt
mik nha
\(x^2-2mx-4m+1=0\left(1\right)\)
\(x^2+\left(3m+1\right)x+2m+1=0\left(2\right)\)
Gọi x0 là nghiệm chung của hai phương trình trên. Do đó ta có:
\(\left\{{}\begin{matrix}x_0^2-2mx_0-4m+1=0\left(3\right)\\x_0^2+\left(3m+1\right)x_0+2m+1=0\end{matrix}\right.\)
\(\Rightarrow\left(3m+1\right)x_0+2m+1-\left(-2mx_0-4m+1\right)=0\)
\(\Rightarrow\left(5m+1\right)x_0+6m=0\)
\(\Rightarrow m\left(5x_0+6\right)+x_0=0\)
\(\Rightarrow m=\dfrac{-x_0}{5x_0+6}\) \(\left(x_0\ne\dfrac{-6}{5}\right)\)
Thay vào (3) ta được:
\(x_0^2-2.\dfrac{-x_0}{5x_0+6}.x_0-4.\dfrac{-x_0}{5x_0+6}+1=0\)
\(\Rightarrow x_0^2+\dfrac{2x_0^2}{5x_0+6}+\dfrac{4x_0}{5x_0+6}+1=0\)
\(\Leftrightarrow x_0^2\left(5x_0+6\right)+2x_0^2+4x_0+5x_0+6=0\)
\(\Leftrightarrow5x_0^3+8x_0^2+9x_0+6=0\)
\(\Leftrightarrow5x_0^3+5x_0^2+3x_0^2+3x_0+6x_0+6=0\)
\(\Leftrightarrow5x_0^2\left(x_0+1\right)+3x_0\left(x_0+1\right)+6\left(x_0+1\right)=0\)
\(\Leftrightarrow\left(x_0+1\right)\left(5x_0^2+3x_0+6\right)=0\)
\(\Leftrightarrow x_0=-1\)
\(\Rightarrow m=\dfrac{-x_0}{5x_0+6}=\dfrac{-\left(-1\right)}{5.\left(-1\right)+6}=\dfrac{1}{6}\)
Xét (1) : Để pt có nghiệm khi
\(\Delta'=m^2-\left(-4m+1\right)=m^2+4m-1\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le-2-\sqrt{5}\\x\ge-2+\sqrt{5}\end{matrix}\right.\)
(2) : Để pt có nghiệm khi \(\Delta=\left(3m+1\right)^2-4\left(2m+1\right)=9m^2+6m+1-8m-4=9m^2-2m-3\ge0\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{1-2\sqrt{7}}{9}\\x\ge\dfrac{1+2\sqrt{7}}{9}\end{matrix}\right.\)
Để 2 pt có nghiệm chung khi \(\left[{}\begin{matrix}x\le-2-\sqrt{5}\\x\ge\dfrac{1+2\sqrt{7}}{9}\end{matrix}\right.\)