K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. Phương trình x2−2(m+1)x+m2−4m+3=0x2−2(m+1)x+m2−4m+3=0 có hai nghiệm phân biệt khi và chỉ khi

Δ′≥0Δ′≥0 ⇔(m+1)2−(m2−4m+3)≥0⇔(m+1)2−(m2−4m+3)≥0 ⇔6m−2≥0⇔6m−2≥0 ⇔m≥13⇔m≥13

Vậy khi m≥13m≥13 thì phương trình đã cho có nghiệm

b. Phương trình đã cho có hai nghiệm cùng dấu khi và chỉ khi

{Δ′>0P>0{Δ′>0P>0 ⇔{(m+1)2−(m2−4m+3)>0x1x2=m2−4m+3>0⇔{(m+1)2−(m2−4m+3)>0x1x2=m2−4m+3>0  ⇔⎧⎩⎨m>13m<1∨m>3⇔{m>13m<1∨m>3 ⇔⎡⎣13<m<1m>3⇔[13<m<1m>3

 

Vậy phương trình trên có hai nghiệm cùng dấu khi và chỉ khi 13<m<113<m<1 hoặc m>3m>3

c. Phương trình đã cho có hai nghiệm trái dấu khi và chỉ khi P<0P<0⇔m2−4m+3<0⇔m2−4m+3<0⇔1<m<3⇔1<m<3

 

d. Phương trình có hai nghiệm phân biệt âm khi và chỉ khi

⎧⎩⎨⎪⎪Δ′>0S<0P>0{Δ′>0S<0P>0⇔⎧⎩⎨⎪⎪(m+1)2−(m2−4m+3)>02(m+1)<0m2−4m+3>0⇔{(m+1)2−(m2−4m+3)>02(m+1)<0m2−4m+3>0 ⇔⎧⎩⎨⎪⎪⎪⎪m>13m<−1m<1∨m>3⇔{m>13m<−1m<1∨m>3⇔⇔ vô nghiệm

Vậy không tồn tại giá trị mm để phương trình bậc hai đã cho có hai nghiệm âm

e. Phương trình bậc hai đã cho có hai nghiệm dương khi và chỉ khi

⎧⎩⎨⎪⎪Δ′>0S>0P>0{Δ′>0S>0P>0⇔⎧⎩⎨⎪⎪(m+1)2−(m2−4m+3)>02(m+1)>0m2−4m+3>0⇔{(m+1)2−(m2−4m+3)>02(m+1)>0m2−4m+3>0⇔⎧⎩⎨⎪⎪⎪⎪m>13m>−1m<1∨m>3⇔{m>13m>−1m<1∨m>3⇔⎡⎣13<m<1m>3⇔[13<m<1m>3

Vậy phương trình trên có hai nghiệm cùng dương khi và chỉ khi 13<m<113<m<1 hoặc m>3m>3

Bài toán 2.  Cho phương trình 2x2−4x−3+m=02x2−4x−3+m=0 với xx là ẩn số và mm là tham số

  1. Tìm mm để phương trình có 2 nghiệm phân biệt x1,x2x1,x2
  2. Tìm mm để x21+x22=8x12+x22=8

Hướng dẫn giải       

a. Phương trình 2x2−4x−3+m=02x2−4x−3+m=0 có 2 nghiệm phân biệt x1,x2x1,x2khi và chỉ khi

Δ′>0Δ′>0 ⇔b2−ac>0⇔b2−ac>0 ⇔4−2(−3+m)>0⇔4−2(−3+m)>0 ⇔5−m>0⇔m<5⇔5−m>0⇔m<5

Vậy với m<5m<5 thì phương trình 2x2−4x−3+m=02x2−4x−3+m=0 có 2 nghiệm phân biệt

b. Xét phương trình 2x2−4x−3+m=02x2−4x−3+m=0 khi m<5m<5

Theo định lý Viet ta có ⎧⎩⎨S=x1+x2=2P=x1x2=−3+m2{S=x1+x2=2P=x1x2=−3+m2

Ta có: x21+x22=8x12+x22=8⇔(x1+x2)2−2x1x2=8⇔(x1+x2)2−2x1x2=8 ⇔4−(−3+m)=8⇔4−(−3+m)=8 ⇔m=−1⇔m=−1 (nhận)

Vậy với m=−1m=−1 thì x21+x22=8x12+x22=8

Bài toán 3. Cho phương trình x2+(m−3)x−3m=0x2+(m−3)x−3m=0 với mm là tham số và xx là ẩn số

  1. Chứng minh phương trình luôn có nghiệm với mọi mm
  2. Gọi x1,x2x1,x2 là hai nghiệm của phương trình trên. Tìm mm để x21+x22−x1x2=9x12+x22−x1x2=9

Hướng dẫn giải

a. Ta có: Δ=(m−3)2+12m=m2+6m+9=(m+3)2≥0∀mΔ=(m−3)2+12m=m2+6m+9=(m+3)2≥0∀m

Suy ra phương trình luôn có nghiệm với mọi mm(đpcm)
Theo định lý Viet ta có {S=x1+x2=3−mP=x1x2=−3m{S=x1+x2=3−mP=x1x2=−3m

Ta có x21+x22−x1x2=9x12+x22−x1x2=9

⇔(x1+x2)2−3x1x2=9⇔(x1+x2)2−3x1x2=9

⇔(3−m)2+9m=9⇔(3−m)2+9m=9

⇔m2+3m=0⇔m2+3m=0

⇔m(m+3)=0⇔m(m+3)=0

⇔[m=0m=−3⇔[m=0m=−3

Nhận xét.

Với m=0m=0 thì Δ>0Δ>0, suy ra phương trình x2+(m−3)x−3m=0x2+(m−3)x−3m=0có hai nghiệm phân biệt .

Với m=−3m=−3 thì Δ=0Δ=0, suy ra phương trình x2+(m−3)x−3m=0x2+(m−3)x−3m=0có hai nghiệm kép.

Bài toán 4. Cho phương trình x2−2mx+m−2=0x2−2mx+m−2=0 với mm là tham số và xx là ẩn số

  1. Chứng minh rằng phương trình có hai nghiệm phân biệt với mọi mm
  2. Gọi x1,x2x1,x2 là hai nghiệm của phương trình. Tìm mm để M=−48x21+x22−6x1x2M=−48x12+x22−6x1x2 đạt giá trị nhỏ nhất

Hướng dẫn giải

a.Ta có Δ=m2−(m−2)Δ=m2−(m−2) =m2−m+14+74=m2−m+14+74 =(m−12)2+74≥74>0∀m=(m−12)2+74≥74>0∀m

Suy ra phương trình x2−2mx+m−2=0x2−2mx+m−2=0 có hai nghiệm phân biệt với mọi mm(đpcm).

b. Theo định lý Viet ta có: {S=x1+x2=2mP=x1x2=m−2{S=x1+x2=2mP=x1x2=m−2

M=−48x21+x22−6x1x2M=−48x12+x22−6x1x2 =−48(x1+x2)2−8x1x2=−484m2−8(m−2)=−48(x1+x2)2−8x1x2=−484m2−8(m−2) latex=−48(2m−2)2+12latex=−48(2m−2)2+12

Ta có: (2m−2)2+12≥12∀m(2m−2)2+12≥12∀m

⇔1(2m−2)2+12≤112∀m⇔1(2m−2)2+12≤112∀m

⇔−48(2m−2)2+12≥−4∀m⇔−48(2m−2)2+12≥−4∀m

Suy ra Max(M)=−4Max(M)=−4. Dấu ”=””=” xảy ra khi và chỉ khi (2m−2)=0⇔m=1(2m−2)=0⇔m=1

Bài toán 5. Cho phương trình x2−mx−1=0x2−mx−1=0 với mm là tham số và xx là ẩn số

  1. Chứng minh rằng phương trình luôn có hai nghiệm trái dấu.
  2. Gọi x1,x2x1,x2 là hai nghiệm của phương trình. Tính giá trị M=x21+x1−1x1−x22+x2−1x2M=x12+x1−1x1−x22+x2−1x2

Hướng dẫn giải

a. Xét phương trình x2−mx−1=0x2−mx−1=0 (mm là tham số và xx là ẩn số) ta có: P=x1x2=−1<0∀mP=x1x2=−1<0∀m

Suy ra phương trình luôn có hai nghiệm trái dấu (đpcm)

b. M=x21+x1−1x1−x22+x2−1x2M=x12+x1−1x1−x22+x2−1x2

M=x1+1−1x1−x2−1+1x2M=x1+1−1x1−x2−1+1x2

M=(x1−x2)+x1−x2x1x2M=(x1−x2)+x1−x2x1x2

M=(x1−x2)(1+1x1x2)M=(x1−x2)(1+1x1x2)

Theo định lý Viet ta có: {S=x1+x2=mP=x1x2=−1{S=x1+x2=mP=x1x2=−1

Ta có: (x1−x2)2=x21+x22−2x1x2=(x1+x2)2−4x1x2(x1−x2)2=x12+x22−2x1x2=(x1+x2)2−4x1x2 =m2+4=m2+4 M2=(x1−x2)2(1+1x1x2)2=(m2+4)×0=0M2=(x1−x2)2(1+1x1x2)2=(m2+4)×0=0

Vậy M=0

13 tháng 4 2020

Từ (2) ta thay a=-2x2-x+5 vào (1) ta được

4x3+3x2-7x+6=(x+2)(4x2-5x+3)=0

=> x=-2 => a=1

Thử lại với a=-1 thì (1) có nghiệm x1=3; x2=-2; (2) có nghiệm x1=\(\frac{3}{2}\); x2=-2(tm)

Vậy a=-1 và x=-2 là nghiệm chung

10 tháng 7 2016

can tui giup k

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

Tham khảo:Cho phường trình x^2-(2m +3)x+m^2+2m+2=0. tìm m để pt trên có 2 nghiệm x1x2 thỏa x1=2x2?

Giải delta xác định m ta có phương trình cỉ có nghiệm khi m lớn hơn hoặc bằng -1/4 

Hệ thức Vi-et cho: 

x1 + x2 = 2m + 3 

x1*x2 = m^2 + 2m + 2 

Vì x1 = 2x2 
=> x1 + x2 = 2x2 + x2 = 3x2 = 2m + 3 (1) 
Và x1 * x2 = 2x2 * x2 = 2x2^2 = m^2 + 2m + 2 (2) 

Từ (1) ta có: 3x2 = 2m + 3 
<=> x2 = (2m + 3)/3 
<=> x2^2 = {(2m + 3)/3}^2 
<=> x2^2 = (4m^2 + 12m + 9) / 9 (3) 

Từ (2) ta có: 2X^2 = m^2 + 2m + 2 
<=> x2^2 = (m^2 + 2m + 2) / 2 (4) 

Từ (3) và (4) ta có phương trình: 

(4m^2 + 12m + 9) / 9 = (m^2 + 2m + 2) / 2 
<=> 8m^2 + 24m + 18 = 9m^2 + 18m + 18 
<=> m^2 - 6m = 0 
<=> m (m - 6) = 0 

<=> m = 0 (thoả) 
hoặc m = 6 (thoả) 

=> Khi m = 0 hoặc m = 6 thì phương trình đã cho có hai nghiệm x1 và x2 và x1 = 2x2

28 tháng 2 2019

1, 

a) \(x^2-4x+m=0\)

\(\Delta=b^2-4ac=\left(-4\right)^2-4.1.m=16-4m\)

Để pt có nghiệm : \(\Delta\ge0\)

<=>\(16-4m\ge0\)

\(\Leftrightarrow16\ge4m\)

\(\Leftrightarrow m\le4\)

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)