Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a
Gọi x0 là nghiệm chung của PT(1) và (2)
\(\Rightarrow\left\{{}\begin{matrix}2x^2_0+\left(3m-1\right)x_0-3=0\left(\times3\right)\\6.x^2_0-\left(2m-1\right)x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x^2_0+3\left(3m-1\right)x_0-9=0\left(1\right)\\6x^2_0-\left(2m-1\right)x_0-1=0\left(2\right)\end{matrix}\right.\) Lấy (1)-(2) ,ta được
PT\(\Leftrightarrow3\left(3m-1\right)-9+\left(2m-1\right)+1\)=0
\(\Leftrightarrow9m-3-9+2m-1+1=0\Leftrightarrow11m-12=0\)
\(\Leftrightarrow m=\dfrac{12}{11}\)
Gọi nghiệm chung đó là x0
Có x0^2=mx0-2m-1
x0(mx0-2m+1)-1=0
<=>x0^2+2=mx0-2m+1
x0(x0^2+2)-1=0
Đến đây bạn tìm ra x0 rồi thay vào tìm m nhé
+Xét pt (1), ac < 0 => pt luôn có 2 nghiệm pb
Để 2 pt tương đương thì trước hết pt (2) cũng có 2 nghiệm pb
<=> 3n < 0 <=> n <0
+ Theo định lý Vi-et:
pt (1) : \(\left\{{}\begin{matrix}x_1+x_2=-4m-3n\\x_1x_2=-9\end{matrix}\right.\)
pt (2) : \(\left\{{}\begin{matrix}x_1+x_2=2m+4n\\x_1x_2=3n\end{matrix}\right.\)
pt (1) và (2) tương đương => \(\left\{{}\begin{matrix}-4m-3n=2m+4n\\3n=-9\end{matrix}\right.\)
(bạn tự giải tiếp nhé ^^!, tìm n từ phương trình dưới rồi thay vào pt trên tìm m)
x^2 +(4m+3n)x -9 =0 (1)
x^2 +(2m +4n)x +3n =0 (2)
\(\Delta_1=\left(4m+3n\right)^2+36\)> 0 với mọi m;n => (1) luôn có hai nghiệm
có tích hai nghiệm = -9 không phụ thuộc m;n
để tương đương => (2) phải có hai nghiệm giống (1)
\(\left\{{}\begin{matrix}\Delta_2'=\left(m+2\right)^2-3n>0\\x_1..x_2=3n=-9=>n=n=-3\end{matrix}\right.\) với n=-3 \(\Delta_2'=\left(m+2\right)^2+9>0\) đúng với m => nhận n =-3
tổng hai nghiệm bằng nhau
<=>\(x_{11}+x_{12}=x_{12}+x_{22}\Leftrightarrow\left(4m-9\right)=\left(2m-8\right)\Leftrightarrow2m=1;m=\dfrac{1}{2}\)
kết luận
\(\left\{{}\begin{matrix}m=\dfrac{1}{2}\\n=-3\end{matrix}\right.\)
a, Để pt có 2 nghiệm pb khi \(\Delta>0\)
\(\Delta=\left(-2m\right)^2-4\left(m+6\right)=4m^2-4m-24>0\Leftrightarrow m< -2;m>3\)
b, Để pt trên là pt bậc 2 khi \(m\ne0\)
Để pt vô nghiệm khi \(\Delta< 0\)
\(\Delta=4m^2-4m\left(m+3\right)=4m^2-4m^2-12m< 0\Leftrightarrow-12m< 0\Leftrightarrow m>0\)
c, Để pt trên là pt bậc 2 khi \(m\ne2\)
Để pt trên có nghiệm kép \(\Delta=0\)
\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m-2\right)=4m^2-12m+9-4\left(m^2-m-2\right)\)
\(=-8m+17=0\Leftrightarrow m=\frac{17}{8}\)
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )