\(x^2\) - 2(m + 1)x + 3m - 3 < 0 có nghiệm

2) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 1 2024

a.

- Với \(m=-1\) BPT có nghiệm (đúng với mọi x)

- Với \(m\ne-1\) BPT có nghiệm khi:

\(\left[{}\begin{matrix}m+1< 0\\\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m+1\right)^2-\left(m+1\right)\left(3m-3\right)>0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m< -1\\\left\{{}\begin{matrix}m>-1\\\left(m+1\right)\left(4-2m\right)>0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m< -1\\\left\{{}\begin{matrix}m>-1\\-1< m< 2\end{matrix}\right.\end{matrix}\right.\) 

Kết hợp lại ta được: \(m< 2\)

b.

Do \(a=1>0\) nên BPT có nghiệm với mọi m

c.

- Với \(m=1\) BPT có nghiệm

- Với \(m\ne1\) BPT có nghiệm khi:

\(\left[{}\begin{matrix}m-1< 0\\\left\{{}\begin{matrix}m-1>0\\\Delta'=\left(m+1\right)^2-\left(m-1\right)\left(3m-6\right)\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m< 1\\\left\{{}\begin{matrix}m>1\\-2m^2+11m-5\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m< 1\\\left\{{}\begin{matrix}m>1\\\dfrac{1}{2}\le m\le5\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< 1\\1< m\le5\end{matrix}\right.\)

Kết hợp lại ta được: \(m\le5\)

1 tháng 3 2019

\(a)\left(1+m\right)x^2-2mx+2m=0\\ \Delta=\left(2m\right)^2-4\left(1+m\right).2m\\ =4m^2-8m^2-8m\\ =-4m^2-8m\)

Để phương trình có nghiệm \(\Delta\ge0\)

\(-4m^2-8m\ge0\\ \Leftrightarrow-4m\left(m+2\right)\ge0\\ m\left(m+2\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\le0\\m+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}m\ge0\\m+2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\le0\\m\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow-2\le m\le0\)

1 tháng 3 2019

\(b)\left(m-2\right)x^2+2\left(2m-3\right)x+5m-6=0\\ \Delta=\left(2m-3\right)^2-4\left(m-2\right)\left(5m-6\right)\\ =4m^2-12m+9-20m^2+64m-48\\ =-16m^2+52m-39\)

Để phương trình có nghiệm thì \(\Delta\ge0\)

\(-16m^2+52m-39\ge0\\ \Leftrightarrow m\in\left(\dfrac{13\pm\sqrt{13}}{8}\right)\)

Vậy...

7 tháng 5 2020

1/ \(x^2-2\left(m-1\right)x+m^2-3m=0\)

\(\Delta'>0\Leftrightarrow m^2-2m+1-m^2+3m>0\Leftrightarrow m>-1\)

\(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(x^2_1+x^2_2\le8\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\le8\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-3m\right)\le8\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m\le8\)

\(\Leftrightarrow2m^2-2m-4\le0\Leftrightarrow-1\le m\le2\)

\(\Rightarrow-1< m\le2\)

7 tháng 5 2020

Câu 1b, 2, 3 làm tương tự

Câu 4:

\(bpt>0,\forall m\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4m^2-\left(m+1\right)\left(-3m-5\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow7m^2+8m+5< 0\left(lđ,\forall m\right)\)

\(\Rightarrow m>-1\)

7 tháng 12 2017

Hỏi đáp Toán

7 tháng 12 2017

câu b tương tự

câu c chia 2 thợp :th1 m=0

TH2 m≠0 rồi cứ triển thôi

NV
11 tháng 11 2019

a/ \(x^2-2x-3=-m\)

Đặt \(f\left(x\right)=x^2-2x-3\)

\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=-4\) ; \(f\left(-1\right)=0\) ; \(f\left(3\right)=0\)

\(\Rightarrow\) Để pt có nghiệm trên khoảng đã cho thì \(-4\le-m\le0\Rightarrow0\le m\le4\)

b/ \(-x^2+2mx-m+1=0\)

\(\Delta'=m^2+m-1\ge0\Rightarrow\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

Để pt có 2 nghiệm đều âm

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m< 0\\x_1x_2=m-1>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

Vậy pt luôn có ít nhất 1 nghiệm \(x\ge0\) với \(\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

NV
11 tháng 11 2019

c/ \(f\left(x\right)=2x^2-x-1=m\)

Xét hàm \(f\left(x\right)=2x^2-x-1\) trên \(\left[-2;1\right]\)

\(-\frac{b}{2a}=\frac{1}{4}\) ; \(f\left(\frac{1}{4}\right)=-\frac{9}{8}\) ; \(f\left(-2\right)=9\); \(f\left(1\right)=0\)

\(\Rightarrow\) Để pt có 2 nghiệm pb thuộc đoạn đã cho thì \(-\frac{9}{8}< m\le0\)

d/ \(f\left(x\right)=x^2-2x+1=m\)

Xét \(f\left(x\right)\) trên \((0;2]\)

\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=1\); \(f\left(2\right)=1\)

Để pt có nghiệm duy nhất trên khoảng đã cho \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

e/ ĐKXĐ: \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge-3\\x\le-4\end{matrix}\right.\\x\ge m\end{matrix}\right.\)

\(x^2+4x+3=x-m\)

\(\Leftrightarrow f\left(x\right)=x^2+3x+3=-m\)

Xét hàm \(f\left(x\right)\)

\(-\frac{b}{2a}=-\frac{3}{2}\) ; \(f\left(-\frac{3}{2}\right)=\frac{3}{4}\); \(f\left(-3\right)=3\); \(f\left(-4\right)=7\)

Để pt có 2 nghiệm thỏa mãn \(x\notin\left(-4;-3\right)\) thì \(\left[{}\begin{matrix}\frac{3}{4}< m\le3\\m\ge7\end{matrix}\right.\) (1)

Mặt khác \(x^2+3x+m+3=0\)

Để pt có 2 nghiệm thỏa mãn \(m\le x_1< x_2\) thì:

\(\left\{{}\begin{matrix}f\left(m\right)\ge0\\x_1+x_2>2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+4m+3\ge0\\2m< -3\end{matrix}\right.\) \(\Rightarrow m\le-3\) (2)

Từ (1) và (2) suy ra ko tồn tại m thỏa mãn