\(2x^4+\left(m+1\right)x^3-36x^2+2\left(m+1\right)x+8...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 3 2022

Với \(x=0\) ko là nghiệm

Với \(x\ne0\) chia 2 vế cho \(x^2\)

\(\Rightarrow2x^2+\left(m+1\right)x-36+\dfrac{2\left(m+1\right)}{x}+\dfrac{8}{x^2}=0\)

\(\Leftrightarrow2\left(x^2+\dfrac{4}{x^2}+4\right)+\left(m+1\right)\left(x+\dfrac{2}{x}\right)-44=0\)

\(\Leftrightarrow2\left(x+\dfrac{2}{x}\right)^2+\left(m+1\right)\left(x+\dfrac{2}{x}\right)-44=0\)

Đặt \(x+\dfrac{2}{x}=t\Rightarrow x^2-tx+2=0\) (2)

(2) có nghiệm khi \(\Delta=t^2-8\ge0\) (1 nghiệm khi dấu "=" xảy ra, còn lại là 2 nghiệm)

Khi đó pt trở thành:

\(f\left(t\right)=2t^2+\left(m+1\right)t-44=0\) (3)

Do \(ac=-88< 0\) nên (3) luôn có 2 nghiệm pb trái dấu

Phương trình đã cho có đúng 2 nghiệm thực khi:

TH1: (3) có 2 nghiệm pb sao cho \(t^2=8\) , thế vào (1) ko có m thỏa mãn

TH2: (3) có 2 nghiệm thỏa mãn \(\left\{{}\begin{matrix}t_1^2>8\\t_2^2< 8\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t_1< -2\sqrt{2}< t_2< 2\sqrt{2}\\-2\sqrt{2}< t_1< 2\sqrt{2}< t_2\end{matrix}\right.\)

\(\Leftrightarrow f\left(-2\sqrt{2}\right).f\left(2\sqrt{2}\right)< 0\)

\(\Leftrightarrow\left[-2\sqrt{2}\left(m+1\right)-28\right]\left[2\sqrt{2}\left(m+1\right)-28\right]< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{2}\left(m+1\right)>28\\2\sqrt{2}\left(m+1\right)< -28\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m>7\sqrt{2}-1\\m< -7\sqrt{2}-1\end{matrix}\right.\)

NV
8 tháng 2 2020

a/ \(\Delta'=\left(m-1\right)^2-3\left(m+4\right)< 0\)

\(\Leftrightarrow m^2-5m-11< 0\Leftrightarrow\frac{5-\sqrt{69}}{2}< m< \frac{5+\sqrt{69}}{2}\)

b/ \(\Delta=\left(m+1\right)^2-4\left(2m+7\right)< 0\)

\(\Leftrightarrow m^2-6m-27< 0\Rightarrow-3< m< 9\)

c/ \(\Delta=\left(m-2\right)^2-8\left(-m+4\right)< 0\)

\(\Leftrightarrow m^2+4m-28< 0\Rightarrow-2-4\sqrt{2}< m< -2+4\sqrt{2}\)

d/ \(\left\{{}\begin{matrix}m< 0\\\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left(m-1\right)\left(-3m-1\right)< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m< -\frac{1}{3}\\m>1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -\frac{1}{3}\)

NV
25 tháng 11 2019

a/ Với \(m=1\Rightarrow x=\frac{1}{3}\)

Với \(m\ne1\Rightarrow\Delta=9+4\left(m-1\right)\ge0\)

\(\Rightarrow4m+5\ge0\Rightarrow m\ge-\frac{5}{4}\)

b/ Với \(m=4\Rightarrow x=\frac{1}{14}\)

Với \(m\ne4\)

\(\Delta'=\left(m+3\right)^2-\left(m-4\right)=m^2+5m+13=\left(m+\frac{5}{2}\right)^2+\frac{27}{4}>0\) \(\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m