K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

Ta có: x+y+z=0

\(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

M=(x+y)(y+z)(x+z)=(-z).(-x).-(y)=-x.y.z=-2

24 tháng 3 2017

ta có x+y+z=0

\(\Rightarrow x+y=-z\\ y+z=-x\\ x+z=-y\)

M=(x+y).(y+z).(x+z)=(-z).(-x).(-y)=-(x+y+z)

mà x+y+z=2 \(\Rightarrow-\left(x+y+z\right)=-2\)

18 tháng 3 2019

\(x+y+z=0\Leftrightarrow\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(x+y\right)\end{matrix}\right.\)

Nhân theo vế: \(xyz=-\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(\Rightarrow2=-\left(x+y\right)\left(y+z\right)\left(x+z\right)\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=-2\)

3 tháng 5 2018

Ta có \(x+y+z=0\)

=> \(\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)(1)

và \(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)(2)

Thế (1) vào (2), ta có:

\(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

=> \(M=\left(-z\right)\left(-x\right)\left(-y\right)\)

=> \(M=xyz=-3\)

Vậy giá trị M là -3.

25 tháng 4 2018

\(x+y+z=0\Leftrightarrow\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(x+y\right)\end{matrix}\right.\)

Nhân theo vế: \(xyz=-\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(\Rightarrow2=-\left(x+y\right)\left(y+z\right)\left(x+z\right)\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=-2\)

25 tháng 4 2018

Ta có x + y + z = 0

=> x + y = -z

y + z = -x

x + z = -y

=> M = (x + y)(y + z)(x + z) = (-z)(-x)(-y) = -2

19 tháng 1 2017

Giải:

Giả sử: 1<=x<=y<=z.Khi đó từ phương trình suy ra xyz=x+y+z<=3z suy ra xy <= 3

Suy ra: x.y=\(\left\{1,2,3\right\}\)

Nếu x.y=1 thì x=y=1 suy ra 2+z+z (vô lý )

Nếu x.y=2 suy ra x=1,y=2,z=3

Nếu x.y=3 suy ra x=1,y=3,z=2 <y (trái với giả sử)

Vậy x,y,z là hoán vị của (1;2;3)

4 tháng 10 2019

Cho hỏi ko phải cô giáo có dc làm ko:v

Xét \(x+y+z=0\) ta có:\(x+y=-z;y+z=-x;z+x=-y\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(-x\right)\left(-y\right)\left(-z\right)=-xyz\)

\(\Rightarrow P=\frac{-xyz}{xyz}=-1\)

Xét \(x+y+z\ne0\) ta có:

\(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{-x+y+z}{x}\)

\(\Rightarrow\frac{x+y}{z}-1=\frac{x+z}{y}-1=\frac{y+z}{x}-1\)

\(\Rightarrow\frac{x+y}{z}=\frac{x+z}{y}=\frac{z+y}{x}\) ( 1 )

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\left(1\right)=\frac{x+y+x+z+z+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Khi đó:

\(P=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{x+y}{z}\cdot\frac{y+z}{x}\cdot\frac{z+x}{y}=2\cdot2\cdot2=8\)

4 tháng 10 2019

các bạn ơi làm hộ mình với