Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt có nghiệm x = 2 tức là
\(\left(m^2-1\right).2^2+2\left(m-1\right)-3m^2+m=0\)
\(\Leftrightarrow4m^2-4+2m-2-3m^2+m=0\)
\(\Leftrightarrow m^2+3m-6=0\)
\(\Delta=33>0\Rightarrow x=\frac{-3\pm\sqrt{33}}{2}\)
Thử lại (tự thử)
1)đặt phép chia khó nên mình phân tích vậy
\(m^4+m^3-3m^2-m+2=m^4-m^2+m^3-m-2m^2+2=m^2\left(m^2-1\right)+m\left(m^2-1\right)-2\left(m^2-1\right)=\left(m^2-1\right)\left(m^2+m-2\right)\)
=>(m4+m3-3m2-m+2):(m2-1)=m2+m-2=m2+2m-m-2=(m+2)(m-1)
2)2x2-3x+5=2x2-x-2x+1+4=(2x-1)(x-1)+4
Để 2x2-3x+5 chia hết cho 2x-1 thì 4 phải chia hết cho 2x-1
Do x nguyên =>2x-1 là số lẻ =>2x-1 là ước lẻ của 4
=>2x-1=1 hoặc 2x-1=-1
<=>x=1 hoặc x=0
3)a)2x2-x=0
<=>x(2x-1)=0
<=>x=0 hoặc x=0,5
b)x3-4x=0
<=>x(x2-4)=0
<=>x(x-2)(x+2)=0
<=>x=0 hoặc x=2 hoặc x=-2
Với m = 1 ta có phương trình:
\(x^2-2x+1=0\)
Sử dụng đen ta ta có: \(\Delta=\left(-2\right)^2-4.1.1=0\)
nên phương trình có nghiệm kép \(x_1=x_2=\frac{2}{2}=1\)
Vậy phương trình trên có nghiệm x = 1
b) Đặt phương trình \(x^2-\left(3m-1\right)x+2m^2-m=0\left(1\right)\) \(\Rightarrow\Delta>0\)
\(\Leftrightarrow\left[-\left(3m-1\right)\right]^2-4.1.\left(2m^2-m\right)>0\)
\(\Leftrightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)>0\)
\(\Leftrightarrow9m^2-6m+1-8m^2+4m>0\)
\(\Leftrightarrow m^2-2m+1>0\)
\(\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m-1\ne0\Leftrightarrow m\ne1\)
\(\left|x_1-x_2\right|-2=0\Leftrightarrow\left|x_1-x_2\right|=2\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)\(\left(2\right)\)
Áp dụng hệ thức Vi-ét cho phương trình ( 1 ) ta có:
\(\hept{\begin{cases}x_1+x_2=3m-1\\x_1x_2=2m^2-m\end{cases}}\)
từ ( 2 ) suy ra \(\left(3m-1\right)^2-4\left(2m^2-m\right)=4\)
\(\Leftrightarrow9m^2-6m+1-8m^2+4m=4\)
\(\Leftrightarrow m^2-2m+1-4=0\)
\(\Leftrightarrow m^2-2m-3=0\Leftrightarrow\)\(\left(m+1\right)\left(m-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\m-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=-1\left(tmđk\right)\\m=3\left(tmđk\right)\end{cases}}}\)
Vậy \(m=-1;m=3\)thỏa mãn yêu cầu đề bài đã cho