Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cách 1: y' = (9 -2x)'(2x3- 9x2 +1) +(9 -2x)(2x3- 9x2 +1)' = -2(2x3- 9x2 +1) +(9 -2x)(6x2 -18x) = -16x3 +108x2 -162x -2.
Cách 2: y = -4x4 +36x3 -81x2 -2x +9, do đó
y' = -16x3 +108x2 -162x -2.
b) y' = .(7x -3) +(7x -3)'= (7x -3) +7.
c) y' = (x -2)'√(x2 +1) + (x -2)(√x2 +1)' = √(x2 +1) + (x -2) = √(x2 +1) + (x -2) = √(x2 +1) + = .
d) y' = 2tanx.(tanx)' - (x2)' = .
e) y' = sin = sin.
(C) có tâm \(I\left(-1;2\right)\), bán kính \(R=4\), (C') có tâm \(I'\left(10;-5\right)\), bán kính \(R'=4\). Vậy \(\left(C'\right)=T_{\overrightarrow{v}}\left(C\right),\overrightarrow{v}=\overrightarrow{II}=\left(11;-7\right)\)
a: Đặt y'>0
=>(2x-3)(x^2-1)>0
Th1: 2x-3>0 và x^2-1>0
=>x>3/2 và (x>1 hoặc x<-1)
=>x>3/2
TH2: 2x-3<0 và x^2-1<0
=>x<3/2 và -1<x<1
=>-1<x<1
=>Hàm số đồng biến khi x>3/2 hoặc -1<x<1
Đặt y'<0
=>(2x-3)(x^2-1)<0
TH1: 2x-3>0 và x^2-1<0
=>x>3/2 và -1<x<1
=>Loại
TH2: 2x-3<0 và x^2-1>0
=>x<3/2 và (x>1 hoặc x<-1)
=>1<x<3/2 hoặc x<-1
=>Hàm số nghịch biến khi 1<x<3/2 hoặc x<-1
b: Đặt y'>0
=>(x+2)(2x+5)<0
=>-5/2<x<-2
=>hàm số đồng biến khi -5/2<x<-2
Đặt y'<0
=>(x+2)(2x+5)>0
=>x>-2 hoặc x<-5/2
=>Hàm số nghịch biến khi x>-2 hoặc x<-5/2