\(y=\left(x+2\right)^2\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

a: \(y=\left(x+2\right)^2=x^2+4x+4\)

=>\(y'=2x+4\)

Đặt y'>0

=>2x+4>0

=>x>-2

Đặt y'<0

=>2x+4<0

=>x<-2

Vậy: Hàm số đồng biến trên \(\left(-2;+\infty\right)\) và nghịch biến trên \(\left(-\infty;-2\right)\)

b: \(y=\left(x^2-1\right)\left(x+2\right)\)

=>\(y'=\left(x^2-1\right)'\cdot\left(x+2\right)+\left(x^2-1\right)\left(x+2\right)'\)

\(=2x\left(x+2\right)+x^2-1=2x^2+4x+x^2-1=3x^2+4x-1\)

Đặt y'>0

=>\(3x^2+4x-1>0\)

=>\(\left[{}\begin{matrix}x>\dfrac{-2+\sqrt{7}}{3}\\x< \dfrac{-2-\sqrt{7}}{3}\end{matrix}\right.\)

Đặt y'<0

=>\(3x^2+4x-1< 0\)

=>\(\dfrac{-2-\sqrt{7}}{3}< x< \dfrac{-2+\sqrt{7}}{3}\)

Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;\dfrac{-2-\sqrt{7}}{3}\right);\left(\dfrac{-2+\sqrt{7}}{3};+\infty\right)\)

Hàm số nghịch biến trên khoảng \(\left(\dfrac{-2-\sqrt{7}}{3};\dfrac{-2+\sqrt{7}}{3}\right)\)

c: \(y=\left(x+2\right)\left(2x^2-3\right)\)

=>\(y'=\left(x+2\right)'\left(2x^2-3\right)+\left(x+2\right)\left(2x^2-3\right)'\)

\(=2x^2-3+4x\left(x+2\right)\)

\(=6x^2+8x-3\)

Đặt y'>0

=>\(6x^2+8x-3>0\)

=>\(\left[{}\begin{matrix}x>\dfrac{-4+\sqrt{34}}{6}\\x< \dfrac{-4-\sqrt{34}}{6}\end{matrix}\right.\)

Đặt y'<0

=>\(6x^2+8x-3< 0\)

=>\(\dfrac{-4-\sqrt{34}}{6}< x< \dfrac{-4+\sqrt{34}}{6}\)

Vậy: hàm số đồng biến trên các khoảng \(\left(-\infty;\dfrac{-4-\sqrt{34}}{6}\right);\left(\dfrac{-4+\sqrt{34}}{6};+\infty\right)\)

Hàm số nghịch biến trên khoảng \(\left(\dfrac{-4-\sqrt{34}}{6};\dfrac{-4+\sqrt{34}}{6}\right)\)

d: \(y=\left(x-1\right)^2\left(x+2\right)\)

\(=\left(x^2-2x+1\right)\left(x+2\right)\)

\(=x^3+2x^2-2x^2-4x+x+2\)

=>\(y=x^3-3x+2\)

=>\(y'=3x^2-3\)

Đặt y'>0

=>\(3x^2-3>0\)

=>\(x^2>1\)

=>\(\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

Đặt y'<0

=>\(3x^2-3< 0\)

=>x^2<1

=>-1<x<1

Vậy: Hàm số đồng biến trên các khoảng \(\left(1;+\infty\right);\left(-\infty;-1\right)\)

Hàm số nghịch biến trên khoảng (-1;1)

9 tháng 4 2017

a) Cách 1: y' = (9 -2x)'(2x3- 9x2 +1) +(9 -2x)(2x3- 9x2 +1)' = -2(2x3- 9x2 +1) +(9 -2x)(6x2 -18x) = -16x3 +108x2 -162x -2.

Cách 2: y = -4x4 +36x3 -81x2 -2x +9, do đó

y' = -16x3 +108x2 -162x -2.

b) y' = .(7x -3) +(7x -3)'= (7x -3) +7.

c) y' = (x -2)'√(x2 +1) + (x -2)(√x2 +1)' = √(x2 +1) + (x -2) = √(x2 +1) + (x -2) = √(x2 +1) + = .

d) y' = 2tanx.(tanx)' - (x2)' = .

e) y' = sin = sin.


24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

9 tháng 4 2017

a) y' = 3.(x7- 5x2)2.(x7- 5x2)' = 3.(x7 - 5x2)2.(7x6 - 10x) = 3x.(x7 - 5x2)2(7x5 - 10).

b) y = 5x2 - 3x4 + 5 - 3x2 = -3x4 + 2x2 + 5, do đó y' = -12x3 + 4x = -4x.(3x2 - 1).

c) y' = = = .

d) y' = = = .

e) y' = 3. . = 3. = - ..

NV
13 tháng 5 2020

\(L_1=\lim\limits_{x\rightarrow0}\frac{x\left(x^2+3x-2\right)}{x\left(x^4+4\right)}=\lim\limits_{x\rightarrow0}\frac{x^2+3x-2}{x^4+4}=-\frac{1}{2}\)

\(L_2=\lim\limits_{x\rightarrow+\infty}\frac{1-\frac{3}{x^2}+\frac{2}{x^3}}{\left(\frac{4}{x}-2\right)^3}=\frac{1}{\left(-2\right)^3}=-\frac{1}{8}\)

\(L_3=\lim\limits_{x\rightarrow-1}\frac{\left(2x+1\right)\left(x+1\right)}{x\left(x+1\right)}=\lim\limits_{x\rightarrow-1}\frac{2x+1}{x}=1\)

\(L_4=\lim\limits_{x\rightarrow2}\frac{x^2-4x+1}{4-x^2}=\frac{1}{0}=+\infty\)

\(L_5=\lim\limits_{x\rightarrow3}\frac{\sqrt{x+1}-2}{x-2}=\frac{0}{1}=0\)

\(L_6=\lim\limits_{x\rightarrow1}\frac{x+3-\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)\left(\sqrt{x+3}+x+1\right)}=\lim\limits_{x\rightarrow1}\frac{-\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(\sqrt{x+3}+x+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\frac{-\left(x+2\right)}{\left(x+1\right)\left(\sqrt{x+3}+x+1\right)}=\frac{-3}{2.4}=-\frac{3}{8}\)

\(L_7=\lim\limits_{x\rightarrow+\infty}\frac{x^2+x+1-\left(x-1\right)^2}{\sqrt{x^2+x+1}+x-1}\lim\limits_{x\rightarrow+\infty}\frac{3x}{\sqrt{x^2+x+1}+x-1}=\lim\limits_{x\rightarrow+\infty}\frac{3}{\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+1-\frac{1}{x}}=\frac{3}{2}\)

\(L_8=\lim\limits_{x\rightarrow-\infty}\frac{x^2+x+1-\left(3x-2\right)^2}{\sqrt{x^2+x+1}+3x-2}=\lim\limits_{x\rightarrow-\infty}\frac{-8x^2+13x-3}{\sqrt{x^2+x+1}+3x-2}=\lim\limits_{x\rightarrow-\infty}\frac{-8+\frac{13}{x}-\frac{3}{x^2}}{-\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+3-\frac{2}{x}}=\frac{-8}{-1+3}=-4\)

24 tháng 5 2017

(C) có tâm \(I\left(-1;2\right)\), bán kính \(R=4\), (C') có tâm \(I'\left(10;-5\right)\), bán kính \(R'=4\). Vậy \(\left(C'\right)=T_{\overrightarrow{v}}\left(C\right),\overrightarrow{v}=\overrightarrow{II}=\left(11;-7\right)\)

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

Chọn D

Tham khảo:

Xét hàm số g(x) = f(x) − f(x + 0,5)

Ta có

g(0) = f(0) − f(0 + 0,5) = f(0) − f(0,5)

g(0,5) = f(0,5) − f(0,5 + 0,5) = f(0,5) − f(1) = f(0,5) − f(0)

(vì theo giả thiết f(0) = f(1)).

Do đó,

undefined