Tìm khẳng định đúng trong các khẳng định sau:

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2020

Chọn D.

Ta có (I) đúng vì f(x) = x5 – x2 + 1 là hàm đa thức nên liên tục trên R..

Ta có (III) đúng vì  liên tục trên (2; +∞)  nên hàm số liên tục trên [2; +∞)

(!!) sai vì hàm số gián đoạn tại các điểm hàm số không xác định.

NV
26 tháng 2 2020

Câu 1: đáp án C đúng (đáp án A và B hiển nhiên sai, đáp án D chỉ đúng khi a không âm)

Câu 2: (I) sai, vì với \(x< -1\) hàm ko xác định nên ko liên tục

(II) đúng do tính chất hàm sin

(III) đúng do \(\lim\limits_{x\rightarrow1}\frac{\left|x\right|}{x}=\frac{\left|1\right|}{1}=f\left(1\right)\)

Vậy đáp án D đúng

11 tháng 10 2018

+) Ta có (I) đúng vì f ( x ) = x 5 - x 2 + 1 là hàm đa thức nên liên tục trên R

+) Ta có (III) đúng vì Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 1) liên tục trên (2;+∞) và Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 1) nên hàm số liên tục trên [2;+∞).

+) (II) sai vì trên khoảng ( -1, 1)hàm số đã cho không xác định nên hàm số không liên tục trên khoảng đó.

Chọn D

4 tháng 4 2017

a) Các bạn tự vẽ hình nhé . Đồ thị hàm số y = f(x) là một đường không liền nét mà bị đứt quãng tại x0 = -1. Vậy hàm số đã cho liên tục trên khoảng (-∞; -1) và (- 1; +∞).

b) +) Nếu x < -1: f(x) = 3x + 2 liên tục trên (-∞; -1) (vì đây là hàm đa thức).

+) Nếu x> -1: f(x) = x2 – 1 liên tục trên (-1; +∞) (vì đây là hàm đa thức).

+) Tại x = -1;

Ta có =ham-so-lien-tuc= 3(-1) +2 = -1.

ham-so-lien-tuc= (-1)2 – 1 = 0.

ham-so-lien-tucnên không tồn tại ham-so-lien-tuc. Vậy hàm số gián đoạn tại
x0 = -1.

26 tháng 5 2017

TenAnh1 TenAnh1 A = (-0.04, -7.12) A = (-0.04, -7.12) A = (-0.04, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) D = (10.58, -5.6) D = (10.58, -5.6) D = (10.58, -5.6)

4 tháng 4 2017

+) Hàm số ham-so-lien-tuc xác định khi và chỉ khi x2+ x – 6 ≠ 0 <=> x ≠ -3 và x ≠ 2.

Hàm số f(x) liên tục trên các khoảng (-∞; -3), (-3; 2) và (2; +∞)

+) Hàm số g(x) = tanx + sinx xác định khi và chỉ khi

tanx ≠ 0 <=> x ≠ π/2 +kπ với k ∈ Z.

Hàm số g(x) liên tục trên các khoảng ( – π/2+kπ; π/2 +kπ) với k ∈ Z.

25 tháng 1 2017

Chọn B.

Ta có (II) đúng vì hàm số lượng giác liên tục trên từng khoảng của tập xác định.

Ta có (III) đúng vì 

Khi đó 

Vậy hàm số   liên tục tại x = 1.

Tham khảo:

Xét hàm số g(x) = f(x) − f(x + 0,5)

Ta có

g(0) = f(0) − f(0 + 0,5) = f(0) − f(0,5)

g(0,5) = f(0,5) − f(0,5 + 0,5) = f(0,5) − f(1) = f(0,5) − f(0)

(vì theo giả thiết f(0) = f(1)).

Do đó,

undefined

 
25 tháng 8 2018

- Ta có (II) đúng vì hàm số lượng giác liên tục trên từng khoảng của tập xác định.

- Ta có (III) đúng vì 

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 2)

- Khi đó:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 2)

- Vậy hàm số 

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 2)

liên tục tại x = 1.

- (I) Sai vì với x < -1 thì hàm số đã cho không xác định nên tại các điểm x 0   <   - 1  thì hàm số đã cho không liên tục.

Chọn D.