Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: đáp án C đúng (đáp án A và B hiển nhiên sai, đáp án D chỉ đúng khi a không âm)
Câu 2: (I) sai, vì với \(x< -1\) hàm ko xác định nên ko liên tục
(II) đúng do tính chất hàm sin
(III) đúng do \(\lim\limits_{x\rightarrow1}\frac{\left|x\right|}{x}=\frac{\left|1\right|}{1}=f\left(1\right)\)
Vậy đáp án D đúng
Lời giải:
Theo định nghĩa về giới hạn thì khi \(\lim_{x\to -\infty}f(x)=2; \lim_{x\to -\infty}g(x)=3\) thì \(\lim_{x\to -\infty}[f(x)-2]=0; \lim_{x\to -\infty}[g(x)-3]=0\)
Khi đó, theo định nghĩa về giới hạn 0 thì với mọi số \(\epsilon >0\) ta tìm được tương ứng $n_1,n_2$ sao cho:
\(\left\{\begin{matrix} |f(x)-2|<\frac{\epsilon}{2}\forall n>n_1\\ |g(x)-3|< \frac{\epsilon}{2}\forall n>n_2\end{matrix}\right.\)
Gọi \(n_0=\max (n_1,n_2)\)
\(\Rightarrow |f(x)-2+g(x)-3|< |f(x)-2|+|g(x)-3|< \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \) \(\forall n>n_0\)
Điều này chứng tỏ \(f(x)-2+g(x)-3=f(x)+g(x)-5\) có giới hạn 0
\(\Rightarrow \lim_{x\to -\infty}[f(x)+g(x)]=5\)
Thịnh ơi, có gì mấy câu trả lời SGK em giúp anh trình bày đầy đủ và làm đẹp nhé, có Latex đầy đủ á. Mình làm hướng đến cộng đồng, em giúp hoc24 nhé!
a) Ta có: \(\Delta x = x - {x_0},\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\)
\(\begin{array}{l}\mathop {\lim }\limits_{\Delta x \to 0} \frac{{h({x_0} + \Delta x) - h({x_0})}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x) + g(x) - f({x_0}) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{g(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{g\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - g\left( {{x_0}} \right)}}{{\Delta x}}\end{array}\)
b) \(h'({x_0})\) = \(f'({x_0}) + g'({x_0})\)
Chọn B.
- Theo tính chất giới hạn của hàm số.