Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left[-\left(m-1\right)\right]^2-4\left(m^2-3m\right)=m^2-2m+1-4m^2+12m=-3m^2+10m+1\)
Để pt có 2 nghiệm trái dấu thì
\(\hept{\begin{cases}\Delta>0\\P< 0\end{cases}\Leftrightarrow\hept{\begin{cases}-3m^2+10m+1>0\\x_1+x_2=m-1< 0\end{cases}\Rightarrow}\hept{\begin{cases}m>\frac{5-2\sqrt{7}}{3}\\m< 1\end{cases}}}\)
Phương trình có nghiệm x = 1/2
=> \(8\left(\frac{1}{2}\right)^2-8\cdot\frac{1}{2}+m^2+1=0\)
=> \(8\cdot\frac{1}{4}-8\cdot\frac{1}{2}+m^2+1=0\)
=> 2 - 4 + m2 + 1 = 0 \(\Leftrightarrow\)m2-1=0 \(\Leftrightarrow\)m2 = 1 \(\Leftrightarrow\)m= \(\pm1\)
Vậy với m = \(\pm1\)thì x có nghiệm duy nhất là x = \(\frac{1}{2}\)
Thay x=\(\frac{1}{2}\) vào phương trình ta có
\(8.\left(\frac{1}{2}\right)^2-8.\frac{1}{2}+m^2+1=0\)
\(\Leftrightarrow8.\frac{1}{4}-4+m^2+1=0\)
\(\Leftrightarrow2-4+m^2+1=0\)
\(\Leftrightarrow m^2-1=0\)
\(\Leftrightarrow m^2=1\Rightarrow m=\pm1\)
Thay m=1 vào phương trình ta có
\(8x^2-8x+1^2+1=0\)
\(\Leftrightarrow8x^2-8x+2=0\)
Ta có \(\Delta'=\left(-4\right)^2-8.2=16-16=0\)
\(\Rightarrow\)Phương trình có nghiệm kếp \(x_1=x_2=\frac{-b'}{a}=-\frac{-4}{8}=\frac{1}{2}\)
Thay m=-1 vào ta có kết quả tương tụ
Vậy nghiệm còn lại là \(\frac{1}{2}\)
Nhớ k cho mình nha
Cho phương trình
\(8x^2-8x+m^2+1=\)0
x lầ ẩn số
Tìm m để phương trinhf có nghiệm 1/2 tìm nghiệm còn lại
a/
PT có nghiệm \(x=\sqrt{2}\Rightarrow\left(m-1\right).2-2m.\sqrt{2}+m-2=0\)
\(\Leftrightarrow\left(3-2\sqrt{2}\right)m=4\Leftrightarrow m=\frac{4}{3-2\sqrt{2}}\)
b/
\(\left(m-1\right)x^2-2mx+m-2=0\text{ (1)}\)
\(+m-1=0\Leftrightarrow m=1\text{ thì }\left(1\right)\text{ trở thành }-2x+1-2=0\Leftrightarrow x=-\frac{1}{2}\)(loại do chỉ có 1 nghiệm)
\(+m-1\ne0\Leftrightarrow m\ne1\)
\(\left(1\right)\text{ là một phương trình bậc 2 ẩn }x.\)
\(\left(1\right)\text{ có 2 nghiệm phân biệt }\Leftrightarrow\Delta'=m^2-\left(m-1\right)\left(m-2\right)>0\)
\(\Leftrightarrow3m-2>0\Leftrightarrow m>\frac{2}{3}\)
a) Nếu m = -1 thì : \(4x-3=0\Leftrightarrow x=\frac{3}{4}\) => pt có một nghiệm
Nếu \(m\ne-1\) , xét \(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)=m^2-2m+1-\left(m^2-m-2\right)=-m+3\)
Để pt có hai nghiệm phân biệt thì \(\Delta>0\) , tức là \(3-m>0\Leftrightarrow m< 3\)
Vậy để pt có hai nghiệm phân biệt thì \(\begin{cases}m< 3\\m\ne-1\end{cases}\)
b) Thay x = 2 vào pt đã cho , tìm được m = -6
Suy ra pt : \(-5x^2+14x-8=0\Leftrightarrow\left(5x-4\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{4}{5}\end{array}\right.\)
Vậy nghiệm còn lại là x = 4/5
c) Áp dụng hệ thức Vi-et , ta có : \(\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m-2\end{cases}\)
\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{7}{4}\Leftrightarrow4\left(x_1+x_2\right)=7x_1.x_2\)
\(\Rightarrow4.\left(2m-2\right)=7.\left(m-2\right)\Leftrightarrow8m-8=7m-14\Leftrightarrow m=-6\)
d) Ta có : \(A=2\left(x_1^2+x_2^2\right)+x_1.x_2=2\left(x_1+x_2\right)^2-3x_1.x_2=8\left(m-1\right)^2-3\left(m-2\right)\)
\(=8m^2-19m+14=8\left(m-\frac{19}{16}\right)^2+\frac{87}{32}\ge\frac{87}{32}\)
=> Min A = 87/32 <=> m = 19/16
Vì x = 5 là nghiệm của phương trình trên nên
Thay x = 5 vào phương trình trên ta được :
\(25+5k+15=0\Leftrightarrow40+5k=0\Leftrightarrow k=-8\)
Vậy k = -8 <=> x = 5