K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3-x^2+3x^2-3x+3x-3-k+11}{x-1}\)

Để đây là phép chia hết thì 11-k=0

hay k=11

21 tháng 10 2018

1/ B chia đa thức f(x) cho g(x) như bình thường, dư 3

Để chia hết, số dư phải bằng 0

hay x- 2 thuộc ước của 3 bằng \(\pm1,\pm3\)

Ta có bảng gt:

.....

Vậy..........

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

20 tháng 11 2022

Bài 3:

\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4+ax^2+b}{x^2-3x+2}\)

\(=\dfrac{x^4-3x^3+2x^2+3x^3-9x^2+6x+\left(a+7\right)x^2-3x\left(a+7\right)+2\left(a+7\right)+x\left(-6+3a+7\right)+b-2a-14}{x^2-3x+2}\)

Để đây là phép chia hết thì 3a+1=0 và b-2a-14=0

=>a=-1/3; b=2a+14=-2/3+14=40/3

Câu 4: 

Để f(x) chia hết cho g(x) thì \(x^2+5x+a⋮x+1\)

\(\Leftrightarrow x^2+x+4x+4+a-4⋮x+1\)

=>a-4=0

hay a=4

Câu 5: 

Đêt f(x) chia hết cho g(x) thì \(2x^2+3x+a⋮x+2\)

\(\Leftrightarrow2x^2+4x-x-2+a+2⋮x+2\)

=>a+2=0

hay a=-2

4 tháng 11 2019

Đa thức \(g\left(x\right)=x^2+x-6\)có nghiệm \(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

Để đa thức f(x) = x3+ax2-bx+12 chia hết cho g(x) = x2+x-6 thì 3 và -2 cũng là hai nghiệm của đa thức x3+ax2-bx+12

Nếu x = 3 thì \(f\left(3\right)=27+9a-3b+12=0\)

\(\Leftrightarrow9a-3b=-39\Leftrightarrow3a-b=-13\)(1)

Nếu x = -2 thì \(f\left(-2\right)=-8+4a+2b+12=0\)

\(\Leftrightarrow4a+2b=-4\Leftrightarrow2a+b=-2\)(2)

Lấy (1) + (2), ta được: \(5a=-15\Leftrightarrow a=-3\)

\(\Rightarrow b=-2+3.2=4\)

Vậy a= -3; b = 4

4 tháng 11 2019

x^2+1 x^3+ax^2+bx-2 x+a x^3 +x ax^2+(b-1)x-2 ax^2 +a (b-1)x -(a+2)

Để f(x) = x3+ax2+bx-2 chia hết cho g(x) =x2+1 thì \(\left(b-1\right)x-\left(a+2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}b-1=0\\a+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=-2\end{cases}}\)