Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: (d): y=ax+b
Theo đề, ta có:
\(\left\{{}\begin{matrix}a\sqrt{2}+b=1\\a\cdot0+b=3\sqrt{2}+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\sqrt{2}+1\\a=\dfrac{1-b}{\sqrt{2}}=\dfrac{1-3\sqrt{2}-1}{\sqrt{2}}=-3\end{matrix}\right.\)
b: Tọa độ giao của (d1) và (d2) là:
2/5x+1=-x+4 và y=-x+4
=>7/5x=3và y=-x+4
=>x=15/7 và y=-15/7+4=13/7
Vì (d) đi qua B(15/7;13/7) và C(1/2;-1/4)
nên ta có hệ:
15/7a+b=13/7 và 1/2a+b=-1/4
=>a=59/46; b=-41/46
Đề thi tuyển sinh THPT Hoàng Văn Thụ, Hòa Bình, 2013-2014
Giải:
PT hoành độ giao điểm là (m+1)m=x2
<=> x2-(m+1)x+m=0
\(\Delta=\left(m+1\right)^2-4m=m^2-2m+1=\left(m-1\right)^2,m\ne1\)
\(\sqrt{\Delta}=m-1\)
\(x_1=\frac{m+1+m-1}{1}=2m\)
\(\Rightarrow y_1=\left(2m\right)^2-\left(m+1\right)2m+m=4m^2-2m^2-2m+m=2m^2-m\)
\(x_2=\frac{m+1-m+1}{1}=2\)
\(\Rightarrow y_2=4-\left(m+1\right)\cdot2+m=4-2m-2+m=2-m\)
=> A(2m;2m2-m)
Giải thích các bước giải:
a,Thay m=3m=3 vào (d)(d) ta đc: y=2x−3y=2x-3
có đường thẳng (d)(d) đi qua điểm B(0;−3)B(0;-3) và điểm A(32;0)A(32;0)
Có tam giác tạo bởi (d)(d) và 2 trục tọa độ là ΔOABΔOAB
Có OA=∣∣∣32∣∣∣=32;OB=|−3|=3OA=|32|=32;OB=|-3|=3
→SOAB=12.OA.OB=12.3/2.3=94(đvdt)→SOAB=12.OA.OB=12.3/2.3=94(đvdt)
Vậy SOAB=94đvdtSOAB=94đvdt
b,Để (d)(d) cắt đt y=−x+1y=-x+1 ⇔m−1≠−1⇔m-1≠-1
⇔m≠0⇔m≠0
Để (d) cắt đt y=−x+1y=-x+1 tại điểm có hoành độ bằng −2-2
Thay x=−2x=-2 vào 2 công thức hàm số ta đc hpt:
{y=(m−1).(−2)−my=2+1=3{y=(m−1).(−2)−my=2+1=3
→{3=−2m+2−my=3{3=−2m+2−my=3
↔{−3m=1y=3{−3m=1y=3
↔{m=−13y=3{m=−13y=3
→m=−13→m=-13(thỏa mãn)
Vậy m=−13m=-13
Bài 1:
a/ \(\left\{{}\begin{matrix}4=-a+b\\-3=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{3}\\b=\frac{5}{3}\end{matrix}\right.\)
b/ Do d song song với \(y=2x+3\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\)
\(3=-5.2+b\Rightarrow b=13\)
c/ Do d vuông góc \(y=-\frac{2}{3}x-5\Rightarrow-\frac{2}{3}.a=-1\Rightarrow a=\frac{3}{2}\)
\(-1=\frac{3}{2}.4+b\Rightarrow b=-7\)
d/ \(b=2\Rightarrow y=ax+2\)
d cắt \(y=x-1\) tại điểm có hoành độ 1 \(\Rightarrow d\) đi qua điểm A(1;0)
\(\Rightarrow0=a+2\Rightarrow a=-2\)
e/ Thay 2 hoành độ vào pt (P) ta được \(\left\{{}\begin{matrix}A\left(2;-4\right)\\B\left(1;-1\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-4=2a+b\\-1=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)
f/ \(a=2\)
Thay tung độ y=1 vào pt đường thẳng được \(A\left(2;1\right)\)
\(\Rightarrow1=2.2+b\Rightarrow b=-3\)
Bài 2:
\(y=mx-2m-1\Rightarrow\left(x-2\right).m-\left(y+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(2;-1\right)\)
\(y=mx+m-1\Rightarrow\left(x+1\right).m-\left(y+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)
\(y=\left(m+1\right)x+2m-3\Rightarrow y=\left(m+1\right)x+2\left(m+1\right)-5\)
\(\Rightarrow\left(m+1\right)\left(x+2\right)-\left(y+5\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)
Phương trình đường thẳng (d) luôn có dạng :
\(y=ax+b\left(d\right)\)
a/ Ta có : \(\left(d\right)\) đi qua hai điểm \(A\left(2,7\right);B\left(-1;-2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}7=2a+b\\-2=-a+b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\)
Vậy...
b/ Ta có : \(\left(d\right)\backslash\backslash\left(d_1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b\ne-6\end{matrix}\right.\)
\(\Leftrightarrow a=-2\)
Phương trình hoành độ giao điểm của \(\left(d_2\right);\left(d_3\right)\) là :
\(2x+1=-x+4\)
\(\Leftrightarrow3x=3\)
\(\Leftrightarrow x=1\)
\(\Leftrightarrow y=3\)
Tọa độ giao điểm của \(\left(d_2\right);\left(d_3\right)\) là \(H\left(1;3\right)\)
Lại có : \(\left(d\right)\) đi qua \(H\left(1;3\right)\)
\(\Leftrightarrow3=a+b\)
\(\Leftrightarrow b=5\)
Vậy....
c/ Ta có : \(\left(d\right)\) đi qua \(C\left(-2;1\right)\)
\(\Leftrightarrow-2=a+b\)
Lại có : \(\left(d\right)\perp\left(d_4\right)\)
\(\Leftrightarrow a.\frac{-1}{2}=1\)
\(\Leftrightarrow a=-2\)
\(\Leftrightarrow b=0\)
Vậy...
Đáp án A