\(x^4\)đa thức 
P=(\(x^3\)-2
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

Ta có:

       \(P=\left(x^3-2x^2+x-1\right)\left(5x^4-x\right)\)

\(\Leftrightarrow P=5x^7-x^4-10x^6+2x^3+5x^5-x^2-5x^4+x\)

\(\Leftrightarrow P=5x^7-10x^6+5x^5-6x^4+2x^3-x^2+x\)

Vậy hệ số của x4 trong đa thức P là: -6

4 tháng 12 2018

a) \(\left(3x-5\right)\left(2x+3\right)-\left(2x-3\right)\left(3x+7\right)-2x\left(x-4\right)\)

\(=\left(6x^2-x-15\right)-\left(6x^2+5x-21\right)-\left(2x^2-8x\right)\)

\(=6x^2-x-15-6x^2-5x+21-2x^2+8x\)

\(=-2x^2+2x+6\)

\(=-2\left(x^2-x-3\right)\)

b) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^2-4\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^4-16\right)\)

\(=\left(x^4+4x^2+4\right)-\left(x^4-16\right)\)

\(=x^4+4x^2+4-x^4+16\)

\(=4x^2+20\)

\(=4\left(x^2+5\right)\)

c) \(\left(2x-y\right)^2-2\left(x+3y\right)^2-\left(1+3x\right)\left(3x-1\right)\)

\(=\left(4x^2-4xy+y^2\right)-2\left(x^2+6xy+9y^2\right)-\left(9x^2-1\right)\)

\(=4x^2-4xy+y^2-2x^2-16xy-18y^2-9x^2+1\)

\(=-7x^2-20xy-17y^2+1\)

d) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)

\(=\left(x^6-3x^4+3x^2-1\right)-\left(x^6-1\right)\)

\(=x^6-3x^4+3x^2-1-x^6+1\)

\(=-3x^4+3x^2\)

\(=-3x^2\left(x^2-1\right)\)

\(=-3x^2\left(x-1\right)\left(x+1\right)\)

e) \(\left(2x-1\right)^2-2\left(4x^2-1\right)+\left(2x+1\right)^2\)

\(=\left(2x-1\right)^2-2\left(2x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)

\(=\left[\left(2x-1\right)-\left(2x+1\right)\right]^2\)

\(=\left(2x-1-2x-1\right)^2\)

\(=\left(-2\right)^2=4\)

g) \(\left(x-y+z\right)^2+\left(y-z\right)^2-2\left(x-y+z\right)\left(z-y\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z+y+z\right)^2\)

\(=\left(x+2z\right)^2\)

h) \(\left(2x+3\right)^2+\left(2x+5\right)^2-\left(4x+6\right)\left(2x+5\right)\)

\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\)

\(=\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\)

\(=\left(2x+3-2x-5\right)^2\)

\(=\left(-2\right)^2=4\)

i) \(5x^2-\dfrac{10x^3+15x^2-5x}{-5x}-3\left(x+1\right)\)

\(=5x^2-\dfrac{-5x\left(-2x^2-3x+1\right)}{-5x}-3\left(x+1\right)\)

\(=5x^2-\left(-2x^2-3x+1\right)-3\left(x+1\right)\)

\(=5x^2+2x^2+3x-1-3x-3\)

\(=7x^2-4\)

30 tháng 8 2018

1, \(\left(2x^4-5x^2y^2+3xy^3\right)\left(5x^3+x^2y-y^3\right)\)

\(=10x^7-25x^5y^2+15x^4y^3+2x^6y-5x^4y^3+5x^2y^5+3xy^6\)

2, a, \(4-2x+5x^2-4x^2\&5x-3+x^2\)

Sắp xếp: \(4-2x+5x^2-4x^2=5x^2-4x^2-2x+4=x^2-2x+4\)

\(5x-3+x^2=x^2+5x-3\)

- \(\left(x^2-2x+4\right)\left(x^2+5x-3\right)=x^4+3x^3-9x^2-14x-12\)

b, Làm tương tự câu a

30 tháng 8 2018

1 ) \(\left(2x^4-5x^2y^2+3xy^3\right)\left(5x^3+x^2y-y^3\right)\)

\(=2x^4\left(5x^3+x^2y-y^3\right)-5x^2y^2\left(5x^3+x^2y-y^3\right)+3xy^3\left(5x^3+x^2y-y^3\right)\)\(=10x^7+2x^6y-2x^4y-25x^5y^2-5x^4y^3+5x^2y^5+15x^4y^3+3x^3y^4-3xy^6\)2 ) a ) \(4-2x+5x^2-4x^2=x^2-2x+4\)

\(5x-3+x^2=x^2+5x-3\)

\(\left(x^2-2x+4\right)\left(x^2+5x-3\right)\)

\(=x^4-2x^3+4x^2+5x^3-10x^2+20x-3x^2+6x-12\)

\(=x^4+3x^3-9x^2+26x-12\)

b ) \(10-x^4+3x-4x^2=-x^4-4x^2+3x+10\)

\(2x+x^3-1=x^3+2x-1\)

\(\left(-x^4-4x^2+3x+10\right)\left(x^3+2x-1\right)\)

\(=-x^4\left(x^3+2x-1\right)-4x^2\left(x^3+2x-1\right)+3x\left(x^3+2x-1\right)+10\left(x^3+2x-1\right)\)\(=-x^7-2x^5+x^4-4x^5-8x^3+4x^2+3x^4+6x^2-3x+10x^3+20x-10\)\(=-x^7-\left(2x^5+4x^5\right)+\left(3x^4+x^4\right)+\left(10x^3-8x^3\right)+\left(4x^2+6x^2\right)+\left(20x-3x\right)-10\)\(=-x^7-6x^5+4x^4+2x^3+10x^2+17x-10\)

10 tháng 10 2017

******************************************************

a) \(x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4\)

\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)

b) \(x^3-3x+2=x^3+2x^2-2x^2-4x+x+2\)

\(=x^2\left(x+2\right)-2x\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x+1\right)=\left(x+2\right)\left(x-1\right)^2\)

c) \(x^3-5x^2+3x+9=x^3+x^2-6x^2-6x+9x+9\)

\(=x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-6x+9\right)=\left(x+1\right)\left(x-3\right)^2\)

d) \(x^3+8x^2+17x+10=x^3+2x^2+6x^2+12x+5x+10\)

\(=x^2\left(x+2\right)+6x\left(x+2\right)+5\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+6x+5\right)=\left(x+2\right)\left(x+5\right)\left(x+1\right)\)

e) \(x^3+3x^2+6x+4=x^3+x^2+2x^2+2x+4x+4\)

\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+2x+4\right)\)

f) \(x^3+3x^2+3x+2=x^3+2x^2+x^2+2x+x+2\)

\(=x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+x+1\right)\)

\(P=5x^6-x^4-10x^5+2x^3+5x^4-x^2-5x^3+x\)

\(=5x^6-10x^5+4x^4-3x^3-x^2+x\)

=>Hệ số của x4 là 4