Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số hạng tổng quát: \(C_5^k2^kx^k3^{5-k}\)
\(\Rightarrow\) Hệ số của \(x^2\) là \(C_5^22^23^3\)
Ta có: \(\left(1-x^2+x^4\right)^{16}=M.C^k_{16}.\left(x^4-x^2\right)^k=M.C^k_{16}.N.C^i_k.\left(x^4\right)^i.\left(-x^2\right)^{k-i}\)
\(=M.N.C^k_{16}.C^i_k.\left(-1\right)^{k-i}.x^{2i+2k}\)
Hệ số của x^16 => 2i + 2k = 16 => i + k = 8 và \(i\le k\)=> Tìm i và k
câu 1.
a. \(=\left(x+y\right)\left(x-5\right)\)
b. \(=\left(x+2y\right)^2\)
c. \(=\left(x-1\right)\left(x-6\right)\)
câu 3.
a. \(A=5\left(x+1\right)^2+2010\ge2010\forall x\)
Vậy \(minA=2010\Leftrightarrow x=-1\)
b. \(\Leftrightarrow\left(y+1\right)\left(x-1\right)=11\)
Vì x, y nguyên nên có các TH :
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y+1=1\\x-1=11\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=11\\x-1=1\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=-1\\x-1=-11\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=-11\\x-1=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=12\end{matrix}\right.\\\left\{{}\begin{matrix}y=10\\x=2\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=-10\end{matrix}\right.\\\left\{{}\begin{matrix}y=-12\\x=0\end{matrix}\right.\end{matrix}\right.\)
câu 6.
a. giống câu 3
b. \(B=-2\left(x-1\right)^2+7\le7\forall x\in R\)
Lời giải:
1)
PT hoành độ giao điểm:
\(x^2-3x+5-(x+b)=0\)
\(\Leftrightarrow x^2-4x+(5-b)=0\)
Để 2 ĐTHS có một điểm chung thì pt hoành độ giao điểm có một nghiệm duy nhất
\(\Leftrightarrow \Delta'=2^2-(5-b)=0\)
\(\Leftrightarrow b=1\)
2)
\(M=|2x+3|+|x-1|\)
\(2M=2|2x+3|+|2x-2|=(|2x+3|+|2x-2|)+|2x+3|\)
\(=(|2x+3|+|2-2x|)+|2x+3|\)
\(\geq |2x+3+2-2x|+|2x+3|\)
\(\geq |3+2|+0=5\)
\(\Rightarrow M\geq \frac{5}{2}\). Vậy \(M_{\min}=\frac{5}{2}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} (2x+3)(2-2x)\geq 0\\ 2x+3=0\end{matrix}\right.\Leftrightarrow x=-\frac{3}{2}\)
Tìm hệ số của số hạng chứa \(x^5\) trong khai triển đa thức \(f\left(x\right)=x\left(1-2x\right)^5\)
Ta có: \(x.\left(C^k_n.a^{n-k}.b^k\right)=x.\left(C^k_5.a^{5-k}.b^k\right)=C^k_5.1^{5-k}.2^k.x^k.x\)
\(=C^k_5.2^k.x^{k+1}\)
Mà ta cần tìm số hạng của x5
\(\Rightarrow k+1=5\Leftrightarrow k=4\)
Vậy số hạng của x5 là: \(C^4_5.2^4=80\)
Ta nhân thêm ''x'' vào số hạng tổng quát vì có ''x'' là nhân tử chung của mỗi số hạng trong khải triển
Hệ số của x^4 sẽ là tổng của 2*a và 1*b, với a là hệ số của x^3 trong (x-1)^5, b là hệ số của x^4 trong (x-1)^5
SHTQ là: \(C^k_5\cdot x^{5-k}\cdot\left(-1\right)^k=C^k_5\cdot\left(-1\right)^k\cdot x^{5-k}\)
Số hạng chứa x^3 tương ứng với 5-k=3
=>k=2
=>Hệ số là \(C^2_5\cdot\left(-1\right)^2=10\)
Số hạng chứa x^4 tương ứng với 5-k=4
=>k=1
=>Hệ số là \(C^1_5\cdot\left(-1\right)=-5\)
=>Hệ số của x^4 là: 2*10+1*(-5)=20-5=15