Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x5=y4⇒x225=y216x5=y4⇒x225=y216
Áp dụng t/c dãy tỉ số bằng nhau :
x225=y216=x2−y225−16=369=4x225=y216=x2−y225−16=369=4
⇒{x2=4.25=100y2=4.16=64{x2=4.25=100y2=4.16=64
⇒{x=10;−10y=8;−8{x=10;−10y=8;−8
Vậy x=10,y=8
x=-10,y=-8
TL:
Ta có : x5=y4⇒x225=y216x5=y4⇒x225=y216
Áp dụng t/c dãy tỉ số bằng nhau :
x225=y216=x2−y225−16=369=4x225=y216=x2−y225−16=369=4
⇒
⇒
Vậy x=10,y=8
x=-10,y=-8
^HT^
Ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
\(\Rightarrow x=2.3=6\)
\(y=2.5=10\)
Vậy x = 6 và y = 10
Ta có : \(\frac{x}{3}=\frac{y}{5}\)
Áp dụng dãy tỉ số bằng nhau :
Ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{z+y}{3+5}=\frac{16}{8}=2\)
\(\Rightarrow\frac{x}{3}=3.2=6\)
\(\Rightarrow\frac{x}{5}=5.2=10\)
Vậy x = 6 và y = 10
C1 : x/3=y/5 =>x=3y/5
=>3y/5+y=16
<=>8y/5=16
=>y=16.5/8=10
=>x=16-10=6
C2: Ta có: x/3 = y/5 = (x+y)/(3+5) = 16/8 = 2 (tính chất dãy tỉ số bằng nhau)
Từ x/3 = 2 => x = 6.
Từ y/5 = 2 => y = 10.
a) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
Suy ra
x = 2 . 3 = 6
y = 2 . 7 = 14
b) Áp dụng tính chất dãy tĩ số bằng nhau
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
Suy ra:
x = 2 . 5 = 10
y = 2 . 2 = 4
a)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{10}=\frac{20}{10}=2\)
\(\Rightarrow\begin{cases}x=2.3=6\\y=7.2=14\end{cases}\)
b)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{3}=\frac{6}{3}=2\)
\(\Rightarrow\begin{cases}x=5.2=10\\y=2.2=4\end{cases}\)
a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{5x}{15}=\frac{2y}{8}=\frac{5x-2y}{15-8}=\frac{28}{7}=4\)
=> x = 4.3 = 12
y = 4.4 = 16
b, \(x:2=y:\left(-5\right)\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
=> x = (-1).2 = -2
y = (-1)(-5) = 5
c, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-10}=\frac{10}{10}=1\)
=> x = 8
y =12
z = 15
a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)
=> x = 11.6 = 66,y = 11.5 = 55
b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)
=> x = (-4).5 = -20 , y = (-4).4 = -16
c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)
=> xy = 3t.16t = 48t2
=> 48t2 = 192
=> t2 = 4
=> t = \(\pm\)2
Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32
Với t = -2 thì x = -6,y = -32
d) \(\frac{x}{-3}=\frac{y}{7}\)
=> \(\frac{x^2}{9}=\frac{y^2}{49}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)
=> x2 = 9.9 = 81 => x = \(\pm\)9
y2 = 9.49 = 441 => y = \(\pm\)21
Câu e,f tương tự
Với x/3=y/5..
=>x*5=y*3 (theo tính chất)
=>x=y*3:5
=>x=y*3/5.
Mà x+y=16.
=>x=16:(3+5)*3=6.
y=16-6=10.
Vậy x=6 và y=10/
bn ơi hình như đề thiếu y đâu v bn