Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}\)=\(\dfrac{y}{5}\)=\(\dfrac{x+y}{2+5}\)=\(\dfrac{-21}{7}\)=-3
=>\(\dfrac{x}{2}\)=\(\dfrac{y}{5}\)=5x=2y
=>x=5.-3=-15
=>y=2.-3=-6
Vậy x=-15;y=6
Lời giải:
Theo tính chất của dãy tỉ số bằng nhau ta có:
Do đó
Vậy x=6, y =10
\(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{3}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12};\dfrac{y}{12}=\dfrac{z}{20}\)
\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)
\(\Rightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)
\(=\dfrac{2x-3y+z}{18-36+20}\)
\(=\dfrac{6}{2}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.9=27\\y=3.12=36\\z=3.20=60\end{matrix}\right.\)
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
\(\Rightarrow x.\dfrac{2}{3}=y.\dfrac{3}{4}=z.\dfrac{4}{5}\)
\(\Rightarrow x:\dfrac{3}{2}=y:\dfrac{4}{3}=z:\dfrac{5}{4}\)
\(\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
\(=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}\)
\(=\dfrac{49}{\dfrac{49}{12}}=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.\dfrac{3}{2}=18\\y=12.\dfrac{4}{3}=16\\z=12.\dfrac{5}{4}=15\end{matrix}\right.\)
Ta có :
\(\dfrac{x}{3}=\dfrac{y}{4}=>\dfrac{x}{9}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{3}=\dfrac{z}{5}=>\dfrac{y}{12}=\dfrac{z}{20}\left(2\right)\)
Từ (1),(2)=>\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)=\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=3\)
=>\(\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)
b: Ta có: x/y=7/9
nên x/7=y/9
=>x/49=y/63
Ta có: y/z=7/3
nên y/7=z/3
=>y/63=z/27
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{49}=\dfrac{y}{63}=\dfrac{z}{27}=\dfrac{x-y+z}{49-63+27}=\dfrac{-15}{13}\)
Do đó: x=-735/13; y=-945/13; z=-405/13
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)
Do đó: x=14; y=40; z=64
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)
Do đó: x=24; y=15; z=6
b: 2x^3-1=15
=>2x^3=16
=>x=2
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)
=>y-25=32; z+9=50
=>y=57; z=41
d: 3/5x=2/3y
=>9x=10y
=>x/10=y/9=k
=>x=10k; y=9k
x^2-y^2=38
=>100k^2-81k^2=38
=>19k^2=38
=>k^2=2
TH1: k=căn 2
=>\(x=10\sqrt{2};y=9\sqrt{2}\)
TH2: k=-căn 2
=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)
a. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{5}=\dfrac{y}{7}=\dfrac{y-2x}{7-5}=\dfrac{24}{2}=12\)
\(\Rightarrow2x=12\cdot5=60\Rightarrow x=60:2=30\)
\(y=12\cdot7=84\)
Vậy x = 30 ; y = 84
b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+3y}{3+2\cdot3}=\dfrac{18}{9}=2\)
\(\Rightarrow x=2\cdot3=6\)
\(y=2\cdot2=4\)
Vậy x = 6 ; y = 4
c. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)
\(\Rightarrow x=2\cdot2=4\)
\(y=3\cdot2=6\)
\(z=4\cdot2=8\)
Vậy x = 4 ; y = 6 ; z = 8
d. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-y-z}{2-3-4}=\dfrac{15}{-5}=-3\)
\(\Rightarrow x=-3\cdot2=-6\)
\(y=-3\cdot3=-9\)
\(z=-3\cdot4=-12\)
Vậy \(x=-4;y=-6;z=-8\)
Bài 1:
a: \(\Leftrightarrow\dfrac{x+2}{2}=x-5\)
=>2x-10=x+2
=>x=12
b: \(\Leftrightarrow\left(x+2\right)^2=100\)
=>x+2=10 hoặc x+2=-10
=>x=-12 hoặc x=8
c: \(\Leftrightarrow\left(2x-5\right)^3=27\)
=>2x-5=3
=>2x=8
=>x=4
a)Xét \(x=\dfrac{y}{2}=\dfrac{z}{3}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=k\\y=2k\\z=3k\end{matrix}\right.\) (1)
Thay (1) vào 4x - 3y + 2z = 36
\(\Rightarrow4.k-3.2k+2.3k=36\)
\(\Rightarrow4k-6k+6k=36\Rightarrow4k=36\)
\(\Rightarrow k=\dfrac{36}{4}=9\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=2.4=8\\z=3.4=12\end{matrix}\right.\)
Vậy...............................................................
b) Xét \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\\z=7k\end{matrix}\right.\) (2)
Thay (2) vào 2x - 3z = 44
\(\Rightarrow2.5k-3.7k=44\)
\(\Rightarrow-11k=44\Rightarrow k=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.\left(-4\right)=-20\\y=4.\left(-4\right)=-16\\z=7.\left(-4\right)=-28\end{matrix}\right.\)
Vậy,................................................
c) Xét \(\dfrac{-x}{7}=\dfrac{y}{11}=\dfrac{-z}{5}=\dfrac{x}{-7}=\dfrac{z}{-5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=-7k\\y=11k\\z=-5k\end{matrix}\right.\) (3)
Thay (3) vào -3z - 2y - x = -88
\(\Rightarrow-3.\left(-5k\right)-2.11k-\left(-7k\right)=-88\)
\(\Rightarrow15k-22k+7k=-88\Rightarrow0k=88\)
\(\Rightarrow k\in\varnothing\)
Suy ra: Không có cặp ( x; y; z) thỏa mãn
Vậy.................................................................
d) Xét \(\dfrac{y}{12}=\dfrac{x}{-5}=\dfrac{z}{11}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5k\\y=12k\\z=11k\end{matrix}\right.\) (4)
Thay (4) vào 5y - 2z = 114
\(\Rightarrow6.12k-2.11k=114\)
\(\Rightarrow50k=114\Rightarrow k=2,28\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5.2,28=-11,4\\y=12.2,28=27,36\\z=25,08\end{matrix}\right.\)
Vậy..............................................
e) Xét \(\dfrac{x}{25}=\dfrac{y}{17}=\dfrac{z}{32}=k\)
\(\left\{{}\begin{matrix}x=25k\\y=17k\\z=32k\end{matrix}\right.\) (5)
Thay (5) vào -2z + 3y - 4x = -452
\(\Rightarrow\left(-2\right).32k+3.17k-4.25k=-452\)
\(\Rightarrow-113k=-452\Rightarrow k=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=25.5=100\\y=17.4=68\\z=32.4=128\end{matrix}\right.\)
Vậy.......................................................
a) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(x=\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\\ \Rightarrow\dfrac{4x}{4}-\dfrac{3y}{6}+\dfrac{2z}{6}=\dfrac{4x-3y+2z}{4-6+6}=\dfrac{36}{4}=9\)
+) \(\dfrac{x}{1}=9\Rightarrow x=9\)
+) \(\dfrac{y}{2}=9\Rightarrow y=18\)
+) \(\dfrac{z}{3}=9\Rightarrow z=27\)
Vậy x = 9; y = 18; z = 27.
tương tự
\(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow5x-3y=0\)
Ta có: \(\left\{{}\begin{matrix}5x-3y=0\\2x-y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=0\\6x-3y=33\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=33\\2x-y=11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=33\\y=55\end{matrix}\right.\)
ta có \(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\Rightarrow\dfrac{2x}{9}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{2x}{9}=\dfrac{y}{5}=\dfrac{2x-y}{9-5}=\dfrac{2-11}{4}=-\dfrac{9}{4}=-2,25\)
nếu \(\dfrac{2x}{9}=2,25\Rightarrow x=10,125\)
\(\dfrac{y}{5}=2,25\Rightarrow y=11,25\)
vậy x=10,125 ; y=11,25