Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a + 2b = 48 và ( a,b ) + 3[ a,b] = 114
\(114⋮3;3\left[a,b\right]⋮3\Rightarrow\left(a,b\right)⋮3\)và a + 2b = 48=> \(a⋮2\Rightarrow a⋮6\)
=> \(a\in\left\{0;6;12;18;24;30;36;42\right\}\)
Ta có bảng :
| |||||||||||||||||||||||||||||||||||||||||
ƯCLN(a,b)=48 nên a=48.m và b=48.n với ƯCLN(m,n)=1. Vì a+b=144 nên 48.m+48.n=144 ... Do m và n là hai nguyên tố cùng nhau.
Vì ƯCLN (a,b)=48 và a+b=48
48m+48n=144
48(m+n)=144
m+n=144:48
m+n=3
m | 1 |
n | 2 |
a | 48 |
b | 96 |
Vậy (a,b)={48;96}
Ta có (a;b).[a;b] = a.b
\(\Rightarrow ab=12.180=2160\)
Lại có (a;b) = 12 đặt \(\hept{\begin{cases}a=12m\\b=12n\end{cases}}\left(m< n;m;n\inℕ^∗\right)\)
Khi đó ab = 1260
\(\Leftrightarrow12m.12n=2160\)
\(\Leftrightarrow m.n=15\)
Lập bảng xét các trường hợp
m | 5 | 15 |
n | 3 | 1 |
a | 60 | 180 |
b | 36 | 12(loại) |
Vậy a = 60 ; b = 36
Tham khảo câu 1
Câu hỏi của Cặp đôi ngọt ngào - Toán lớp 6 - Học toán với OnlineMath
a và b là 12 hoặc 36
Vì a<b nên a=12;b=36
a+b=48
ta gọi a+b=d.m+d.n=48
a=dm
b=dn
d ở đây là ước ,ước =12
a+b=12.m+12.n
ta có 12 ra làm chung
a+b=12(m+n)=48
12(m+n)=48
m+n=12
thay các cặp số thoả mãn có U7CLN =1
a < b nen n< m
n=3 m=1
ra 3.12=36
và 1.12 = 12
a=12 b=36