Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của phạm văn quyết tâm - Toán lớp 6 - Học toán với OnlineMath
Giả sử d = (a;b). Khi đó ta có:
\(\hept{\begin{cases}a=md\\b=nd\end{cases}};\left(m;n\right)=1\Rightarrow\left[a;b\right]=mnd\)
Ta có: md+2nd=48 và 3mnd+d=114
md+2nd=48⇒d(m+2n)=48
3mnd+d=114⇒d(3mn+1)=114
Suy ra d∈ƯC(48,114)=(6;3;2;1)
Nếu d = 1, ta có: 3mn+1=114⇒3mn=113
Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 2 ta có: 3mn+1=57⇒3mn=56
Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 3 ta có: 3mn+1=38⇒3mn=37
Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6
Và m+2n=8
Suy ra m = 2, n = 3 hoặc m = 6, n = 1
Vậy a = 12, b = 36 hoặc a = 36, b = 6.
hok tốt
Em tham khảo tại link dưới đây nhé.
Câu hỏi của phạm văn quyết tâm - Toán lớp 6 - Học toán với OnlineMath
Giả sử d = (a;b). Khi đó ta có:
\(\hept{\begin{cases}a=md\\b=nd\end{cases}};\left(m;n\right)=1\Rightarrow\left[a;b\right]=mnd\)
Ta có: md+2nd=48 và 3mnd+d=114
md+2nd=48⇒d(m+2n)=48
3mnd+d=114⇒d(3mn+1)=114
Suy ra d∈ƯC(48,114)=(6;3;2;1)
Nếu d = 1, ta có: 3mn+1=114⇒3mn=113
Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 2 ta có: 3mn+1=57⇒3mn=56
Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 3 ta có: 3mn+1=38⇒3mn=37
Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6
Và m+2n=8
Suy ra m = 2, n = 3 hoặc m = 6, n = 1
Vậy a = 12, b = 36 hoặc a = 36, b = 6.
hok tốt
Mình sửa 3(a,b) thành 3.[a,b] hen
\(a+2b=48\) => a chia hết cho 2; 144 chia hết cho 3, 3[a,b] chia hết cho 3 =>(a,b) chia hết cho 3 => a chia hết cho 3
=> a chia hết cho 2 và 3 mà (2,3)=1 => a chia hết cho 6 mà a<48 => a thuộc {6,12,18,24,30,36}
a | 6 | 12 | 18 | 24 | 30 | 36 | 42 |
b | 21 | 18 | 15 | 12 | 9 | 6 | 3 |
(a,b) | 3 | 6 | 3 | 12 | 3 | 6 | 3 |
[a,b] | 42 | 36 | 90 | 24 | 90 | 36 | 42 |
(a,b) + [a,b] | 129 | 114 | 273 | 84 | 114 | 114 | 129 |
Đặt ( a,b ) = d => a = md ; b = nd với m,n \(\in\) N* ; ( m,n ) = 1 và [ a,b ] = dmn
a + 2b = 48 => d( m + 2n ) = 48 (1)
( a + b ) + 3[a,b] => d => d(1 + 3mn ) = 114 (2)
Từ (1) và (2) => d \(\in\) ƯC ( 48;114 ) mà ƯCLN ( 48;114 ) = 6
=> d \(\in\) Ư (6) = { 1;2;3;6 } lần lượt thay các giá trị của d vào (1) và (2) ta thấy chỉ có d = 6 là thỏa mãn .
Lập bảng :
m | n | a | b |
2 | 3 | 12 | 18 |
6 | 4 | 36 | 6 |
Vậy 2 số cần tìm là : a = 12 và b = 18
a = 36 và b = 6
Làm lại bài này vì bài trước ghi nhầm phần cuối nha ! ^^
\(a+2b=48\Rightarrow a⋮2\); \(144⋮3\); \(3\left[a,b\right]⋮3\Rightarrow\left(a,b\right)⋮3\Rightarrow a⋮3\Rightarrow a⋮6\); \(a+2b=48\Rightarrow a< 48\)\(\Rightarrow a\in\left\{6;12;18;24;30;36;42\right\}\)
A | 6 | 12 | 18 | 24 | 30 | 36 | 42 |
B | 21 | 18 | 15 | 12 | 9 | 6 | 3 |
( a,b ) | 3 | 6 | 3 | 12 | 3 | 6 | 3 |
[ a,b ] | 42 | 36 | 90 | 24 | 90 | 36 | 42 |
( a,b ) + [ a,b ] | 129 | 114 | 273 | 84 | 114 | 114 | 129 |
Vậy \(a=12;b=18\) hoặc \(a=36;b=6\)