K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 giờ trước (6:05)

\(x+y\) = 4

\(x=4-y\)

Thay \(4-y\) vào biểu thức \(xy=1\)

Ta có: (4 - y).y = 1

4y - \(y^2\) = 1

-(y\(^2\) - 4y + 4) = - 3

(y - 2)\(^2\) = 3

\(\left[\begin{array}{l}y-2=\sqrt3\\ y-2=-\sqrt3\end{array}\right.\)

\(\left[\begin{array}{l}y=\sqrt3+2\\ y=-\sqrt3+2\end{array}\right.\)

\(\left[\begin{array}{l}x=4-\sqrt3-2\\ x=4+\sqrt3-2\end{array}\right.\)

\(\left[\begin{array}{l}x=\left(4-2\right)-\sqrt3\\ x=\left(4-2\right)+\sqrt3\end{array}\right.\)

\(\left[\begin{array}{l}x=2-\sqrt3\\ x=2+\sqrt3\end{array}\right.\)

Vậy: ...

30 tháng 5 2018

\(M=\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{xy}\)

\(=\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}+\frac{3}{4}.\frac{x^2+y^2}{xy}\)

\(\ge2\sqrt{\frac{xy}{x^2+y^2}.\frac{x^2+y^2}{4xy}}+\frac{3}{4}.\frac{2xy}{xy}\)

\(\Rightarrow M\ge1+\frac{3}{2}=\frac{5}{2}\)

Dấu = xảy ra khi \(x=y>0\)

23 tháng 4 2019

\(\frac{4}{\left(x+y\right)^2}+x^2+y^2=\frac{4}{x^2+y^2+2xy}+\left(x^2+y^2+1\right)-1\)

\(=\frac{4}{x^2+y^2+1}+\left(x^2+y^2+1\right)-1\)( vì xy=1)

\(\ge2\sqrt{\frac{4}{x^2+y^2+1}.\left(x^2+y^2+1\right)}-1\)(áp dụng bđt cô si )

\(=2\sqrt{4}-1=3\)

---> đpcm

2 tháng 5 2022

cho mình hỏi là vì sao mà 2xy lại bằng 1 vậy?

 

28 tháng 1 2019

Nháp thử trước nhé: (thường gọi là định hướng làm bài)

Thêm đk: x,y>0

Ta thử khai thác giả thiết:

Biến đổi vế trái giả thiết,ta có:

\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Leftrightarrow2x^2+\frac{y^2}{4}+\frac{1}{x^2}-1=3\)

\(\Leftrightarrow x^2+\left(\frac{y^2}{4}+1\right)+\left(\frac{1}{x^2}+x^2\right)-1=3\)

\(3\ge x^2+2\sqrt{\frac{y^2}{4}.1}+2\sqrt{\frac{1}{x^2}.x^2}-1\)

\(\Leftrightarrow3\ge x^2+y+1\)\(\Leftrightarrow2\ge x^2+y\)

\(\Leftrightarrow2\ge x^2+\frac{y^2}{y}\ge2\sqrt{\frac{\left(xy\right)^2}{y}}\)

Suy ra \(\Rightarrow\sqrt{\frac{\left(xy\right)^2}{y}}\le1\Leftrightarrow\frac{\left(xy\right)^2}{y}\le1\Rightarrow\left(xy\right)^2\le y\Rightarrow P=xy\le\sqrt{y}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{\sqrt{2}}{2};y=2\)

Có dấu "=" rồi => dễ tìm min hơn :v

28 tháng 1 2019

à không,nãy nhầm rồi.Thử lại:

\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Leftrightarrow x^2+\left(\frac{y^2}{4}+1\right)+\left(\frac{1}{x^2}+x^2\right)-1=4\)

\(4\ge x^2+2\sqrt{\frac{y^2}{4}.1}+2\sqrt{\frac{1}{x^2}.x^2}-1\)

\(\Leftrightarrow4\ge x^2+y+1\Leftrightarrow3\ge x^2+y\)

hay \(3\ge x^2+\frac{y^2}{y}\ge2\sqrt{\frac{\left(xy\right)^2}{y}}\Leftrightarrow\sqrt{\frac{\left(xy\right)^2}{y}}\le\frac{3}{2}\)

Suy ra \(\frac{\left(xy\right)^2}{y}\le\frac{9}{4}\Rightarrow\left(xy\right)^2\le\frac{9y}{4}\Leftrightarrow xy\le\sqrt{\frac{9y}{4}}\) :v

3 tháng 12 2017

Ta có: \(A=\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{4}{x-y}\)

Áp dụng BĐT Cô-si cho 2 số không âm, ta có: 

\(A=\left(x-y\right)+\frac{4}{\left(x-y\right)}\ge2\sqrt{\left(x-y\right)\frac{4}{x-y}}=4\)

Dấu bằng xảy ra khi \(\left(x;y\right)=\left(\sqrt{3}+1;\sqrt{3}-1\right);\left(1-\sqrt{3};-1-\sqrt{3}\right)\)

23 tháng 4 2019

\(A=\frac{4}{\left(x+y\right)^2}+x^2+y^2\)

\(=\frac{4}{\left(x+y\right)^2}+\left(x+y\right)^2-2xy\)

\(=\frac{4}{\left(x+y\right)^2}+\frac{\left(x+y\right)^2}{4}+\frac{3}{4}\left(x+y\right)^2-2\)

\(=\frac{4}{\left(x+y\right)^2}+\frac{\left(x+y\right)^2}{4}+\frac{3}{4}\left(x^2+y^2\right)+\frac{3}{4}2xy-2\)

\(=\frac{4}{\left(x+y\right)^2}+\frac{\left(x+y\right)^2}{4}+\frac{3}{4}\left(x^2+y^2\right)+\frac{3}{2}-2\)

Áp dụng bất đẳng thức Cauchy:

\(A\ge2\sqrt{\frac{4}{\left(x+y\right)^2}\frac{\left(x+y\right)^2}{4}}+\frac{3}{4}2\sqrt{x^2y^2}+\frac{3}{2}-2\)

\(A\ge2+\frac{3}{2}+\frac{3}{2}-2\)

\(A\ge3\)

7 tháng 11 2018

Phương trình đề bài cho tương đương:    

      \(\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Rightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Rightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

\(\Rightarrow x+y+2=0\) (thừa số thứ 2 luôn > 0)

\(\Rightarrow x+y=-2\)

Ta có: \(\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\left(-2\right)^2\ge4xy\Rightarrow xy\le1\)

Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\le-\frac{2}{1}=-2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x+y=-2\end{cases}\Rightarrow x=y=-1}\)

7 tháng 11 2018

Bạn ơi tại sao: \(\left(x+y+z\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

5 tháng 6 2017

Áp dụng nè : \(\frac{2}{x^2+y^2}+\frac{2}{2xy}\ge\frac{8}{\left(x+y\right)^2}\ge\frac{1}{2}\)

5 tháng 6 2017

khó was

20 tháng 11 2018

bn ơi bn vào link này nhek bài thứ 2 từ cuối lên nhek https://diendantoanhoc.net/topic/151447-cho-x3-y3-3x2-y2-4xy-4-0-xy0-t%C3%ACm-max-frac1x-frac1y/