Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{y}{5}=\frac{x^2+y^2}{2^2+5^2}=\frac{116}{29}=4\)
\(\Rightarrow\frac{x^2}{4}=4\Rightarrow x^2=16\Rightarrow\)x=4 hoặc x= -4
\(\frac{y^2}{25}=4\Rightarrow y^2=100\Rightarrow\)y=10 hoặc y= -10
a) \(\frac{x}{3}=\frac{y}{4}\)
Đặt \(\frac{x}{3}=\frac{y}{4}=k\)
\(\Rightarrow\orbr{\begin{cases}x=3k\\y=4k\end{cases}}\)
Thay x,y vào x.y = 192
=> 3k . 4k = 192
=> k2 = 16
=> \(k=\orbr{\begin{cases}4\\-4\end{cases}}\)
Với k = 4 thì
x = 12 ; y = 16
Với k = -4 thì
x = -12 ; y = -16
b) Tương tự như vậy
b, Đặt \(\frac{x}{5}=\frac{y}{4}\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\left(k\in N\right)\)
Mà x2 - y2 = 1
=> (5k)2 - (4k)2 = 1
=> 25k2 - 16k2 = 1
=> 9k2 = 1
=> k2 = \(\frac{1}{9}\)
=> k = ±\(\frac{1}{3}\)
+) Với k = \(\frac{1}{3}\)thì x = \(\frac{5}{3}\), y = \(\frac{4}{3}\)
+) Với k = \(-\frac{1}{3}\)thì x = \(\frac{-5}{3}\), y = \(\frac{-4}{3}\)
Đặt k = \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
=> k2 = \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
=> k = -2;2
+ k = -2 thì \(\frac{x}{2}=-2\Rightarrow y=-4\)
\(\frac{y}{3}=-2\Rightarrow y=-6\)
\(\frac{z}{4}=-2\Rightarrow y=-8\)
+ k = 2 thì : \(\frac{x}{2}=2\Rightarrow y=4\)
\(\frac{y}{3}=2\Rightarrow y=6\)
\(\frac{z}{4}=2\Rightarrow y=8\)
Vậy ..............................
Ta có : \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow3x=2y\Leftrightarrow x=\frac{2y}{3}\) (1)
\(\frac{y}{3}=\frac{z}{4}\Leftrightarrow4y=3z\Leftrightarrow z=\frac{4y}{3}\)(2)
thay (1) và (2) vào biểu thức \(^{x^2+y^2+z^2=116}\)ta được:
\(\left(\frac{2y}{3}\right)^2+y^2+\left(\frac{4y}{3}\right)^2=116\)
\(\Leftrightarrow\frac{4y^2}{9}+y^2+\frac{16y^2}{9}=116\)
\(\Leftrightarrow4y^2+9y^2+16y^2=1044\)
\(\Leftrightarrow29y^2=1044\)
\(\Leftrightarrow y^2=36\Leftrightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\)
Với \(y=6\Rightarrow x=\frac{2.6}{3}=4;z=\frac{4.6}{3}=8\)
Với \(y=-6\Rightarrow x=\frac{2.-6}{2}=-4;z=\frac{4.\left(-6\right)}{3}=-8\)
=> x ; y z lần lượt là: {6 ; 4 ; 8) ; {-6 ; -4 ; -8}
a ) 2x+1 . 3y = 12x
=>2x+1*3y=(3*22)x
=>2x+1*3y=3x*22x
=>2x+1=22x và 3x=3y
=>x+1=2x và x=y
=>x=1 và x=y
=>x=y=1
c)2x=4y-1 và 27y=3x+8
=>2x=(22)y-1 và (33)y=3x+8
=>2x=22y-1 và 33y=3x+8
=>x=2y-1 và 3y=x+8
Thay x=2y-1 vào 3y=x+8 ta có:
3y=2y-1+8 =>3y=2y+7
=>y=7 =>x=2*7-1=13
Vậy y=7 và x=13
a) \(2^{x+1}\cdot3^y=12^x\)
\(\left(\frac{12}{2}\right)^x\cdot2=3^y\)
\(6^x\cdot2=3^y\)
.....chịu!
b) \(10^x:5^y=20^y\)
\(10^x=100^y\)
\(2x=y\)
a) 2x+1⋅3y=12x⇔2x+1⋅3y=22x⋅3x2x+1⋅3y=12x⇔2x+1⋅3y=22x⋅3x
⇒{x+1=2xy=x⇔{x=1y=1⇒{x+1=2xy=x⇔{x=1y=1
b) 10x:5y=20y⇔20y⋅5y=10x⇔(20⋅5)y=10x⇔100y=10x⇔102y=10x⇔2y=x10x:5y=20y⇔20y⋅5y=10x⇔(20⋅5)y=10x⇔100y=10x⇔102y=10x⇔2y=x
c) {2x=4y−127y=3x+8⇔{2x=22y−233y=3x+8⇔{x=2y−23y=x+8{2x=4y−127y=3x+8⇔{2x=22y−233y=3x+8⇔{x=2y−23y=x+8
⇔{x=2y−23y=2y−2+8⇔{x=10y=6