K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2018

 \(2x+y+xy=3\)

\(\left(xy+y\right)+\left(2x+2\right)=3+2\)

\(y\left(x+1\right)+2\left(x+1\right)=5\)

\(\left(x+1\right)\left(y+2\right)=5\)

Do đó: \(\left(x+1\right)\inƯ_{\left(5\right)}=\left(-5;-1;1;5\right)\)

Ta có bảng sau:

x+1-5-115
y+2-1-551
x-6-204
y-3-73-1

Vậy có 4 cặp số thỏa mãn đề bài:

\(x=-6,y=-3\)

\(x=-2,y=-7\)

\(x=0,y=3\)

\(x=4,y=-1\)

Chúc bạn học tốt.


 

4 tháng 8 2017

Do \(x\left(x+1\right)⋮2\Rightarrow\left(y^2+1\right)⋮2\Rightarrow\) y2 là số lẻ hay y là số lẻ.

Ta đặt \(y=2k+1\left(k\in Z\right)\), khi đó \(x\left(x+1\right)=\left(2k+1\right)^2+1\)

\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)-\left(2k+1\right)^2=\frac{5}{4}\)

\(\Leftrightarrow4\left(x+\frac{1}{2}\right)^2-4\left(2k+1\right)^2=5\Leftrightarrow\left[\left(2x+1-4k-2\right)\right]\left[\left(2x+1+4k+2\right)\right]=5\)

\(\Leftrightarrow\left(2x-4k-1\right)\left(2x+4k+3\right)=5\)

Tới đây ta tìm được các cặp (x, k), từ đó suy ra các cặp (x,y)

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

28 tháng 2 2020

a) Giả sử \(x+y\) là số nguyên tố

Ta có : \(x^3-y^3⋮x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)⋮x+y\)

\(\Rightarrow x^2+xy+y^2⋮x+y\) ( Do \(x-y< x+y,\left(x-y,x+y\right)=1\) vì \(x+y\) là số nguyên tố )

\(\Rightarrow x^2⋮x+y\) ( Do \(xy+y^2=y\left(x+y\right)⋮x+y\) )

\(\Rightarrow x⋮x+y\) (1)

Mặt khác \(x< x+y,x+y\) là số nguyên tố

\(\Rightarrow x⋮̸x+y\) mâu thuẫn với (1)

Do đó, điều giả sử sai.

Vậy ta có điều phải chứng minh.

28 tháng 2 2020

Bạn thì nhanh nhờ

Del rep cho

2 tháng 1 2017

b1:

x-y=5->x=y+5

->x-3y/5-2y=y+5-3y/5-2y=5-2y5-2y=1

->đpcm

18 tháng 11 2016

Mình viết gọn thôi nhé , tại nhiều câu quá ^^

a/ \(\left(x+1\right)\left(1-y\right)=2\)

b/ \(\left(x+2\right)\left(y-1\right)=13\)

c/ \(\left(x-2\right)\left(y+3\right)=1\)

d/ \(\left(x-1\right)\left(y-1\right)=3\)

e/ \(\left(2x-y\right)\left(x+2y\right)=7\)

Về cách tìm nghiệm nguyên chắc bạn biết rồi nên mình không viết rõ ra nhé ^^

19 tháng 11 2016

vết tn mk ko hiểu tại sao lại phân tích như vậy

còn cách tìm nghiệm thì mk pit

 

tớ biết nhưng không làm đâu.

6 tháng 4 2018

Đùa mk ak ??