Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) VD: \(a=4;b=5\) có \(a^2+b^2=4^2+5^2=16+25=41\) là số nguyên tố
Mà \(a+b=4+5=9\) là hợp số
\(\Rightarrow\)Mệnh đề " Nếu \(a^2+b^2\) là số nguyên tố thì \(a+b\)cũng là số nguyên tố " sai
b) Ta có : \(a^2-b^2=\left(a^2-ab\right)+\left(ab-b^2\right)\)
\(\Rightarrow a^2-b^2=a\left(a-b\right)+b\left(a-b\right)\)
\(\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)\)
+) Nếu \(a-b>1\)
\(\Rightarrow a^2-b^2⋮\left(a+b\right)\) và \(a^2-b^2⋮\left(a-b\right)\)
\(\Rightarrow a^2-b^2\) là hợp số
\(\Rightarrow\)Mâu thuẫn
\(\Rightarrow a-b=1\)
\(\Rightarrow a^2-b^2=a+b\)
Mà \(a^2-b^2\) là số nguyên tố
\(\Rightarrow a+b\) là số nguyên tố
\(\Rightarrow\) Mệnh đề : " Nếu \(a>b\) và \(a^2-b^2\)là số nguyên tố thì \(a+b\) cũng là số nguyên tố " đúng
Số p có một trong ba dạng : 3k ; 3k + 1 ; 3k + 2 với k thuộc N*
Nếu p = 3k thì p = 3 ( vì p là số nguyên tố ), khi đó p + 2 = 5 ; p + 4 = 7 đều là các số nguyên tố.
Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số
Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên p + 4 là hợp số.
=> p = 3
vì các số nguyên tố đều là số lẻ (có số 2 là chẵn nhưng ở đây không làm cững biết là không thỏa mãn với yêu cầu đề bài rồi ) ta xét số 3
3+2=5 (là 1 số nguyên tố)
3+4=7(là 1 số nguyên tố)
vậy p=3
Ta phải tìm số nguyên dương n để A là số nguyên tố.Với :
A=n^2/60-n=60^2-(60^2-n^2)/60-n=-(60^2-n^2)/60-n+60^2/60-n=-(60+n)+3600/60+n
Muốn A là số nguyên tố trước hết A là số nguyên.Như vậy (60-n) là ước nguyên dương của 3600,suy ra n<60 và 3600:(60-n) phải lớn hơn 60+n, đồng thời thỏa mãn A là số nguyên tố.Ta kiểm tra lần lượt các giá trị của n là ước của 60:
Trường hợp 1:n=30 => Ta có A=-90+3600:30=30 không là số nguyên tố => loại
Trường hợp 2:n=15 => Ta có A=-75+3600:45=5 là số nguyên tố => chọn
Trường hợp 3:n=12 => Ta có A=-72+3600:48=3 là số nguyên tố => chọn
Trường hợp 4: n=6,n=5,n=3,n=2 thì A không là số nguyên => loại. Suy ra:n=1 thì A âm => loại
Vậy n=12 và n=15
Em làm chưa chắc đúng nha, chị thông cảm.
Vì p,q đều là số nguyên tố mà p-q cũng là số nguyên tố nên p và q khác tính chẵn lẻ.
Suy ra: q=2 (Vì p>q; p, q đều lad số nguyên tố)
+, Nếu p=3 : Thỏa mãn.
+, Nếu p>3 : Xét 2 TH: p=3k+1 (k thuộc N*) hoặc p=3k+2(k thuộc N*)
-p=3k+1 => p+q=3k+1+2=3k+3 là hợp số
-p=3k+2 : Tương tự có p-q là hợp số.
Vậy q=2, p=3.
3-2=1 => p-q đâu là số nguyên tố ?