K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2020

Vì p,q đều là số nguyên tố mà p-q cũng là số nguyên tố nên p và q khác tính chẵn lẻ.

Suy ra: q=2 (Vì p>q; p, q đều lad số nguyên tố)

+, Nếu p=3 : Thỏa mãn.

+, Nếu p>3 : Xét 2 TH: p=3k+1 (k thuộc N*) hoặc p=3k+2(k thuộc N*)

 -p=3k+1 => p+q=3k+1+2=3k+3  là hợp số

 -p=3k+2 : Tương tự có p-q là hợp số.

Vậy q=2, p=3.

4 tháng 2 2020

3-2=1 => p-q đâu là số nguyên tố ?

11 tháng 6 2018

C

C2 đúng

C3 đúng

C4 đúng

chúc bạn học tốt nha

10 tháng 12 2018

24la duoc

14 tháng 12 2018

giải đầy đủ cả bài hộ mik vs nha

2 tháng 4 2020

a) VD: \(a=4;b=5\) có \(a^2+b^2=4^2+5^2=16+25=41\) là số nguyên tố 

Mà \(a+b=4+5=9\) là hợp số 

\(\Rightarrow\)Mệnh đề " Nếu \(a^2+b^2\) là số nguyên tố thì \(a+b\)cũng là số nguyên tố " sai 

b) Ta có : \(a^2-b^2=\left(a^2-ab\right)+\left(ab-b^2\right)\) 

\(\Rightarrow a^2-b^2=a\left(a-b\right)+b\left(a-b\right)\)

\(\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)\)

+) Nếu \(a-b>1\)

\(\Rightarrow a^2-b^2⋮\left(a+b\right)\) và \(a^2-b^2⋮\left(a-b\right)\)

\(\Rightarrow a^2-b^2\) là hợp số 

\(\Rightarrow\)Mâu thuẫn 

\(\Rightarrow a-b=1\)

\(\Rightarrow a^2-b^2=a+b\)

Mà \(a^2-b^2\) là số nguyên tố 

\(\Rightarrow a+b\) là số nguyên tố 

\(\Rightarrow\) Mệnh đề :  " Nếu \(a>b\)\(a^2-b^2\)là số nguyên tố thì \(a+b\) cũng là số nguyên tố " đúng   

Số p có một trong ba dạng : 3k ; 3k + 1 ; 3k + 2 với k thuộc N*

Nếu p = 3k thì p = 3 ( vì p là số nguyên tố ), khi đó p + 2 = 5 ; p + 4 = 7 đều là các số nguyên tố.

Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số 

Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên p + 4 là hợp số.

=> p = 3

23 tháng 10 2019

vì các số nguyên tố đều là số lẻ (có số 2 là chẵn nhưng ở đây không làm cững biết là không thỏa mãn với yêu cầu đề bài rồi ) ta xét số 3

3+2=5 (là 1 số nguyên tố)

3+4=7(là 1 số nguyên tố)

vậy p=3

Ta phải tìm số nguyên dương n để A là số nguyên tố.Với :

A=n^2/60-n=60^2-(60^2-n^2)/60-n=-(60^2-n^2)/60-n+60^2/60-n=-(60+n)+3600/60+n 

Muốn A  là số nguyên tố trước hết A là số nguyên.Như vậy (60-n) là ước nguyên dương của 3600,suy ra n<60 và 3600:(60-n) phải lớn hơn 60+n, đồng thời thỏa mãn A là số nguyên tố.Ta kiểm tra lần lượt các giá trị của n là ước của 60:

Trường hợp 1:n=30 => Ta có A=-90+3600:30=30 không là số nguyên tố => loại

Trường hợp 2:n=15 => Ta có A=-75+3600:45=5 là số nguyên tố => chọn

Trường hợp 3:n=12 => Ta có A=-72+3600:48=3 là số nguyên tố => chọn

Trường hợp 4: n=6,n=5,n=3,n=2 thì A không là số nguyên => loại. Suy ra:n=1 thì A âm => loại

Vậy n=12 và n=15 

Em làm chưa chắc đúng nha, chị thông cảm.
 

26 tháng 10 2019

cái gì thế SNT nhỏ hơn 100.0<SNT>100

mà SNT \(\le99\)

nên đề bài sai rồi nhá

26 tháng 10 2019

bài tập đánh lừa mà

17 tháng 11 2015

tich mình đi mình làm cho

 

17 tháng 11 2015

bằng 5 

tick mình bạn nhé!!

Bài 1:Tìm các số nguyên tố p sao cho:p+2 và p+4 là các số nguyên tố.Giải:p là số nguyên tố nên:-Nếu p=2 thì ........... =4 và .............=6 là ..............-Nếu p=3 thì ................. và ..................... là ........................-Nếu p>3 thì p=3k+1 hoặc p=3k+2  trong đó k khác 0,ta có:p=3k+1 thì p+2 =.................. là ....................... cho 3 và 3k+3 lớn hơn ..... nên...
Đọc tiếp

Bài 1:Tìm các số nguyên tố p sao cho:

p+2 và p+4 là các số nguyên tố.

Giải:p là số nguyên tố nên:

-Nếu p=2 thì ........... =4 và .............=6 là ..............

-Nếu p=3 thì ................. và ..................... là ........................

-Nếu p>3 thì p=3k+1 hoặc p=3k+2  trong đó k khác 0,ta có:

  • p=3k+1 thì p+2 =.................. là ....................... cho 3 và 3k+3 lớn hơn ..... nên ........................................................
  • p=3k+2 thì p+4 =.............. là .............................cho 3 và 3k+6 lớn hơn .....nên................................................................

Vậy,.....................................................................................................................

Bài 2:Bạn Nam đem số tự nhiên a chia cho 22 được số dư là 7,sau đó bạn Nam đem số a chia cho 36 được số dư là  4 .

Nếu bạn Nam làm  phép chia thứ nhất là đúng thì phép chia thứ 2 đúng hay sai?

Giải:Theo  đề bài ,ta có:

a=.............+..........[1]

a=................+..............[2]

Với p,q thuộc N.Như vậy,22p và  36q hoặc bằng ...........hoặc là........,do đó theo [1]thì......................,còn theo [2]thì ...................

Vậy ,nếu bạn Nam ..................................................................... 

Nhanh lên nhé,10 tk

 

 

0