Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số dương cần tìm là a và b
Ta có: \(\left(a+b\right).30=\left(a-b\right).120=16.ab\)
\(\left(a+b\right).30=\left(a-b\right).120\Rightarrow\frac{a+b}{a-b}=\frac{120}{30}=4\)
\(\Rightarrow a+b=4a-4b\Rightarrow b+4b=4a-a\Rightarrow5b=3a\Rightarrow a=\frac{5}{3}b\)
\(\left(a+b\right).30=16ab\)
\(\Rightarrow\left(\frac{5}{3}b+b\right).30=16.\frac{5}{3}b.b\)
\(\Rightarrow80b=\frac{80}{3}b^2\)
\(\Rightarrow80b\left(1-\frac{1}{3}b\right)=0\Rightarrow1-\frac{1}{3}b=0\left(b>0\right)\Rightarrow b=3\)
Tìm được \(a=\frac{5}{3}b=\frac{5}{3}.3=5\)
Vậy 2 số cần tìm là 5 và 3.
2.Gọi hai số dương lần lượt là x và y
Theo đề bài ta có : \(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{xy}{\frac{1}{12}}\)
hay \(35\left(x+y\right)=210\left(x-y\right)=12\left(x\cdot y\right)\)
Mà \(BCNN\left(35,210,12\right)=420\)
=> \(\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12\left(x\cdot y\right)}{420}\)
=> \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{x\cdot y}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
+)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{2y}{10}=\frac{y}{5}\)(1)
+) \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{2x}{14}=\frac{x}{7}\)(2)
=> Từ (1) và (2) => \(\frac{x}{7}=\frac{y}{5}\)
Đặt \(\frac{x}{7}=\frac{y}{5}=k\Rightarrow\orbr{\begin{cases}x=7k\\y=5k\end{cases}}\)
=> \(xy=7k\cdot5k=35k^2\)
=> \(35k^2=35\)
=> \(k^2=1\)
=> k = 1(loại âm vì đề bài cho 2 số dương)
Do đó : \(\frac{x}{7}=1\Rightarrow x=7\)
\(\frac{y}{5}=1\)=> \(y=5\)
Vậy x = 7,y = 5
1. Câu hỏi của I will shine on the sky - Toán lớp 7 - Học toán với OnlineMath
Có thể bạn ghi sai đề chỗ 210, là 21 thì đúng hơn đó.
Theo đề bài, ta có: \(\frac{x+y}{35}=\frac{x-y}{21}=\frac{xy}{12}.\)(1)
Theo tính chất dãy tỉ số bằng nhau, ta có: \(\frac{x+y}{35}=\frac{x-y}{21}=\frac{x+y+\left(x-y\right)}{35+21}=\frac{2x}{56}=\frac{x}{28}\)
do đó: \(\frac{x}{28}=\frac{xy}{12}\Leftrightarrow\frac{x}{xy}=\frac{28}{12}\Leftrightarrow\frac{1}{y}=\frac{28}{12}=\frac{7}{3}\Leftrightarrow y=\frac{3}{7}\)
thay \(y=\frac{3}{7}\) vào (1), ta có:
\(\frac{x+\frac{3}{7}}{35}=\frac{x-\frac{3}{7}}{21}\Rightarrow21\left(x+\frac{3}{7}\right)=35\left(x-\frac{3}{7}\right)\)
\(\Rightarrow21x+9=35x-15\)
\(\Rightarrow35x-21x=9+15\)
\(\Rightarrow x=\frac{24}{14}=\frac{12}{7}\)
Vậy \(\left(x;y\right)=\left(\frac{12}{7};\frac{3}{7}\right)\)
Học tốt nhé ^3^
Tiến_Về_Phía _Trước đề bài mình viết ở trên là đúng đó không sai đâu
Theo đề bài ta có :
7 ( a - b ) = 1 ( a+b) = 24( a. b )
7a - 7b = a - b = 24 ab
6a = 8b = 24ab => a = 24 : b (1)
6a = 8b => \(\frac{a}{8}\) = \(\frac{b}{6}\) (2)
Thay (1) vào (2) , ta có:
\(\frac{24}{\frac{b}{8}}\) = \(\frac{b}{6}\) => \(\frac{3}{b}\) = \(\frac{b}{6}\) => \(b^2\) = 3 . 6 = 18 => b = \(\sqrt{18}\)
=> a= 24 ; b = 24 : \(\sqrt{18}\) = \(\sqrt{2^5}\)