\(ab=2\left(a+b\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Họ và tên thí sinh:…………………………………………………………………Số báo danh:………..…… Phòng thi số:……………Bài 1: (4,5 điểm)a) Trong ba số a, b, c có một số dương, một số âm và một số bằng 0, ngoài ra còn biết:\(|a|=b^2\left(b-c\right)\) . Hỏi số nào dương, số nào âm, số nào bằng 0 ?b) Tìm hai số x và y sao cho \(x+y=xy=x:y\left(y\ne0\right)\)c) Cho p là số nguyên tố. Tìm tất cả...
Đọc tiếp

Họ và tên thí sinh:…………………………………………………………………Số báo danh:………..…… Phòng thi số:……………

Bài 1: (4,5 điểm)
a) Trong ba số a, b, c có một số dương, một số âm và một số bằng 0, ngoài ra còn biết:
\(|a|=b^2\left(b-c\right)\) . Hỏi số nào dương, số nào âm, số nào bằng 0 ?
b) Tìm hai số x và y sao cho \(x+y=xy=x:y\left(y\ne0\right)\)

c) Cho p là số nguyên tố. Tìm tất cả các số nguyên a thỏa mãn: \(a^2+a-p=0\)
Bài 2: (4,5 điểm)

a) Cho đa thức \(F\left(x\right)=ã^3+bx^3+2014x+1\),biết \(F\left(2015\right)=2\)Hãy tính \(F\left(-2015\right)\)

b) Tìm x, biết: \(\left(x-5\right)^{x+1}-\left(x-5\right)^{x+13}=0\)

c, Không dùng máy tính, hãy tính giá trị của biểu thức:

\(S=\frac{\frac{3}{13}-0,6+\frac{3}{7}+0,75}{\frac{11}{7}-2,2+\frac{11}{13}+2,75}\)

Bài 3: (4.0 điểm)

a) Tìm giá trị nhỏ nhất của biểu thức:

\(A=|x-2|+|2x-3|+|3x-4|\)

b) Tìm hai số khác 0 biết tổng, hiệu, tích của hai số đó tỉ lệ với \(3;\frac{1}{3};\frac{200}{3}\)

Bài 4: (4.0 điểm)
Cho tam giác ABC vuông ở A có AB = 6cm, AC = 8cm và đường cao AH. Tia phân
giác của góc BAH cắt BH tại D. Trên tia CA lấy điểm K sao cho CK = BC.
a) Chứng minh: KB // AD.
b) Chứng minh: \(KD\perp BC.\)
c) Tính độ dài KB.

Bài 5: (3.0 điểm)
Cho tam giác ABC có góc A tù. Kẽ\(AD\perp AB\)  và AD = AB (tia AD nằm giữa hai tiaAB và AC). Kẽ \(AE\perp AC\) và AE = AC (tia AE nằm giữa hai tia AB và AC). Gọi M làtrung điểm của BC. Chứng minh rằng: \(AM\perp DE\)

11
11 tháng 6 2019

#)Giải :

Câu 1 :

a) 

- Nếu a = 0 => b = 0 hoặc b - c = 0 => b = c hoặc b = c ( đều vô lí ) => a khác 0

- Nếu b = 0 => a = 0 ( vô lí ) => b khác 0

=> c = 0

=> |a| = b2.b = b3

=> b3 ≥ 0 

=> b là số nguyên dương 

=> a là số nguyên âm

Vậy a là số nguyên dương, b là số nguyên âm và c = 0

11 tháng 6 2019

#)Giải :

Câu 1 :

b) x.y = x : y 

=> y= x : x = 1

=> y = -1 hoặc 1 

+) y = 1 => x + 1 = x ( vô lí )

+) y = -1 => x - 1 = -x

=> x = 1/2

Vậy y = -1 ; x = 1/2

10 tháng 2 2020

2.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-3-3y-5+4z-4}{2.4-3.3+4.5}=\frac{2x-3y+4z-12}{19}=\frac{75-12}{19}=\frac{63}{19}\)

=> x,y,z=

11 tháng 2 2020

1) Ta có : \(\sqrt{50}+\sqrt{26}+1>\sqrt{49}+\sqrt{25}+1=7+5+1=13=\sqrt{169}>\sqrt{168}\)

=> \(\sqrt{50}+\sqrt{26}+1>\sqrt{168}\)

6) Ta có : \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\)

Khi đó M > \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

=> M > 1

Lại có : \(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{c+a}< \frac{c+b}{a+b+c}\end{cases}}\)

Khi đó M < \(\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

=> M < 2 (2)

Kết hợp (1) và (2) => 1 < M < 2

=> \(M\notinℤ\)(ĐPCM)

9 tháng 12 2018

Bài 1:

Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c

<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1

Sai rồi em ơi 2 trường hợp cơ 

+, bằng -1

+, bằng 2

18 tháng 2 2019

VL CTV MÀ CŨNG HỎI

CTV cũng được phép hỏi chứ bạn.

1 tháng 5 2018

Thay F(1) với x =1 vào thôi 

G(2) cũng vậy thay x=2 vào rồi cho 2 cái bằng nhau là tìm ra a 

1 tháng 5 2018

Ta có \(f\left(1\right)=g\left(2\right)\)

=> \(2+a+4=4-20-b\)

=> \(\left(2+a+4\right)-\left(4-20-b\right)=0\)

=> \(2+a+4-4+20+b=0\)

=> \(22+a+b=0\)

=> \(a+b=-22\)(1)

và \(f\left(-1\right)=g\left(5\right)\)

=> \(2-a+4=25-25-b\)

=> \(2-a+4=-b\)

=> \(2+4=a-b\)

=> \(a-b=6\)

=> \(a=6+b\)(2)

Thế (2) vào (1), ta có: \(6+b+b=-22\)

=> \(2b=-28\)

=> \(b=-14\)

và \(a=6+b=6-14=-8\)

27 tháng 7 2020

Bài làm:

Ta có: \(ab.bc=\frac{3}{5}.\frac{4}{5}\Leftrightarrow ab^2c=\frac{12}{25}\)

\(\Rightarrow ab^2c\div ac=\frac{12}{25}\div\frac{3}{4}\)

\(\Rightarrow b^2=\frac{16}{25}\Leftrightarrow b=\pm\frac{4}{5}\)

Thay vào ta tính được a và b

b,c tương tự a

27 tháng 7 2020

a, \(ab.bc.ca=\frac{3}{4}.\frac{4}{5}.\frac{3}{4}\)

\(\left(a.b.c\right)^2=\left(\frac{3}{5}\right)^2\)

\(a.b.c=\frac{3}{5}\)

\(\Rightarrow b=\frac{4}{5};c=1;a=\frac{3}{4}\)

b, \(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=-12+18+30\)

\(\Rightarrow\left(a+b+c\right).\left(a+b+c\right)=36\)

\(\Rightarrow\left(a+b+c\right)^2=36\)

\(\hept{\begin{cases}a+b+c=6\\a+b+c=-6\end{cases}}\)

Nếu a + b + c = 6 \(\Rightarrow\)a = - 2 b = 3 c=5

Nếu a + b + c = - 6 \(\Rightarrow\)a = 2 , b = -3 c = -5

c,ab=c => a=c/b (1) 

bc=4a => a=(bc)/4 (2) 

Từ (1) và (2) => c/b = (bc)/4 

<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2 

(*) Với b=2 thì 

(1) => a=c/2 <=> c=2a:

ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3 

_ Với a=3 thì c= 2*3 = 6 (thỏa) 

_Với a=-3 thì c= 2*-3 =-6 (thỏa) 

(*) Với b=-2 thì 

(1) => a=c/-2 <=> c=-2a 

Ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3 

_ Với a=3 thì c= -2*3 = -6 (thỏa) 

_Với a=-3 thì c= -2*-3 =6 (thỏa) 

Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) } 

DD
1 tháng 3 2021

a) Chỉ là thay số nên bạn tự làm nhé. 

b) \(y_1=1\)\(y_2=f\left(y_1\right)=f\left(1\right)=1-\left|1\right|=0\)\(y_3=f\left(y_2\right)=f\left(0\right)=1-\left|0\right|=1\), cứ tiếp tục như vậy.

Dễ dàng nhận thấy rằng với \(k\)lẻ thì \(y_k=1\)\(k\)chẵn thì \(y_k=0\)(1).

Khi đó ta có: 

\(A=y_1+y_2+...+y_{2021}\)

\(A=1+0+1+...+1\)

\(A=\frac{2021-1}{2}+1=1011\)

27 tháng 2 2019

a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

=> \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)

=> \(\frac{5}{x}=\frac{1-2y}{8}\)

=> 5.8 = x(1 - 2y)

=> x(1 - 2y) = 40

=> x; (1 - 2y) \(\in\)Ư(40) = {1; -1; 2; -2; 4; -4; 5; -5; 8; -8; 10; -10; 20; -20; 40; -40}

Vì 1 - 2y là số lẽ => 1 - 2y \(\in\){1; -1; 5; -5}

Lập bảng :

  1 - 2y  1  -1   5   -5
     x  40  -40  8  -8
    y  0  1  -2  3

Vậy ....

27 tháng 2 2019

\(A^2=\frac{x+1}{x-3}=1+\frac{4}{x-3}\).

Để A nguyên thì A2 nguyên tức là \(\frac{4}{x-3}\) nguyên 

Nên \(x-3\inƯ\left(4\right)=\left\{\pm1;\pm4\right\}\)

\(\Rightarrow x\in\left\{-1;2;4;7\right\}\)

Thay lần lượt các giá trị x vào xem với giá trị nào của x thì A2 là số chính phương là xong!