\(\frac{1}{a-1966}+\frac{1}{b-2013}=1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2015

Nếu: \(\frac{1}{a-1966}\le\frac{1}{b-2013}\)=> \(\frac{1}{a-1966}+\frac{1}{b-2013}\le\frac{2}{b-2013}\) <=> \(1\le\frac{2}{b-2013}\)

<=> 0 < b  - 2013 \(\le\) 2 <=> 2013 < b \(\le\) 2015. Vì b nguyên nên b = 2014 hoặc b = 2015

Nếu b = 2014 => \(\frac{1}{a-1966}+1=1\) => \(\frac{1}{a-1966}=0\) không tồn tại a

Nếu b = 2015 => \(\frac{1}{a-1966}+\frac{1}{2}=1\) => a - 1966 = 2 => a = 1968

Tương tự , Nếu \(\frac{1}{b-2013}\le\frac{1}{a-1966}\) => \(\frac{1}{a-1966}+\frac{1}{b-2013}\le\frac{2}{a-1966}\)=> \(1\le\frac{2}{a-1966}\)

0 < a - 1966 \(\le\) 2 . tương tự , => a = 1968; b = 2015

Vậy...

5 tháng 10 2020

\(P=\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{4-6\sqrt{a}}{1-a}-\frac{-3}{\sqrt{a}+1}\)

ĐK : \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)

a) \(P=\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{4-6\sqrt{a}}{a-1}+\frac{3}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a+\sqrt{a}+4-6\sqrt{a}+3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\sqrt{a}-1}{\sqrt{a}+1}\)

Với \(a=4-2\sqrt{3}\)( tmđk \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\))

\(P=\frac{\sqrt{4-2\sqrt{3}}-1}{\sqrt{4-2\sqrt{3}}+1}\)

\(=\frac{\sqrt{3-2\sqrt{3}+1}-1}{\sqrt{3-2\sqrt{3}+1}+1}\)

\(=\frac{\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2}-1}{\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2}+1}\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}-1}{\sqrt{\left(\sqrt{3}-1\right)^2}+1}\)

\(=\frac{\left|\sqrt{3}-1\right|-1}{\left|\sqrt{3}-1\right|+1}\)

\(=\frac{\sqrt{3}-1-1}{\sqrt{3}-1+1}=\frac{\sqrt{3}-2}{\sqrt{3}}\)

b) \(P=\frac{\sqrt{a}-1}{\sqrt{a}+1}=\frac{\sqrt{a}+1-2}{\sqrt{a}+1}=1-\frac{2}{\sqrt{a}+1}\)( ĐK \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\))

Để P đạt giá trị nguyên => \(\frac{2}{\sqrt{a}+1}\)nguyên

=> \(2⋮\sqrt{a}+1\)

=> \(\sqrt{a}+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

=> \(\sqrt{a}\in\left\{0;1\right\}\)< đã loại hai trường hợp âm >

=> \(a\in\left\{0\right\}\)< loại trường hợp a = 1 >

Vậy với a = 0 thì P có giá trị nguyên

4 tháng 3 2019

Do \(ab+bc+ac=3abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Áp dụng BĐT Cauchy cho 3 số \(\frac{1}{a};\frac{2}{b};\frac{3}{c}\) , ta có : 

\(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=\frac{1}{a}+\frac{4}{2b}+\frac{9}{3c}\ge\frac{\left(1+2+3\right)^2}{a+2b+3c}=\frac{36}{a+2b+3c}\)

\(\Rightarrow\frac{1}{a+2b+3c}\le\frac{1}{36}\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\left(1\right)\)

CMTT , ta có : \(\frac{1}{2a+3b+c}\le\frac{1}{36}\left(\frac{2}{a}+\frac{3}{b}+\frac{1}{c}\right)\);  \(\frac{1}{3a+b+2c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{1}{b}+\frac{2}{c}\right)\left(2\right)\)

Từ ( 1 ) ; ( 2 ) 

\(\Rightarrow F\le\frac{1}{36}\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}+\frac{2}{a}+\frac{3}{b}+\frac{1}{c}+\frac{3}{a}+\frac{1}{b}+\frac{2}{c}\right)\)

\(=\frac{1}{36}.6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{6}.3=\frac{1}{2}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

16 tháng 3 2020

Bạn Khôi Bùi làm đúng đó

7 tháng 9 2016

câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m

7 tháng 9 2016

Bạn nói rõ hơn được không???

22 tháng 10 2018

a, \(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)

\(\Rightarrow\) \(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\)

\(\Rightarrow\) \(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)

\(\Rightarrow\) \(2S=1-\frac{1}{2017}\)

\(\Rightarrow\) \(2S=\frac{2016}{2017}\)

\(\Rightarrow\) \(S=\frac{1008}{2017}\)