Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số cần tìm là a và b (là số tự nhiên)
Theo bài ra ta có: a-b=2
a2-b2=36
=>(a-b)(a+b)=36
=>2(a+b)=36
=>a+b=18
=>a=(18+2):2=10
b=10-2=8
Vậy 2 số cần tìm là 10 và 8
Gọi số thứ nhất là x. Như vậy thì số thứ hai là 20-x.
Ta có phương trình \(x^2+\left(20-x\right)^2=280\Leftrightarrow2x^2-40x+120=0\Leftrightarrow x^2-20x+60=0\Rightarrow x=10\pm2\sqrt{10}\)
Vậy hai số đó là \(10+2\sqrt{10}\)và\(10-2\sqrt{10}\)
Vậy 2 số cần tìm là 8 và 11Gọi 2 số tự nhiên cần tìm là a,b (a>b)
Theo giả thiết, ta có
a + b = 19 và a^2 + b^2 = 185
=> 2ab = (a+b)^2 - (a^2+b^2) = 176 <=> ab = 88
=> a,b là nghiệm của pt x^2 - 19x + 88 = 0 (*)
(*) <=> (x-11)(x-8) = 0 <=> x= 8 hoặc x = 11
=> (a,b) = (11;8)
gọi x là số tự nhiên thứ nhất , y là số tự nhiên thứ hai . (x,y > 0)
tổng của chúng bằng 19
=> x + y = 19
<=> x = 19 - y
tổng các bình phương của chúng bằng 185
=> x^2 + y^2 = 185
<=> (19 - y)^2 + y^2 = 185
<=> 361 - 38y + y^2 + y^2= 185
<=> 2y^2 - 38y + 176 = 0
<=> y = 8 hoặc y = 11
y = 8 => x = 19 - 8 = 11
y = 11 => x = 19 - 11 = 8
vậy hai số tự nhiên đó là 8 và 11
gọi 2 số đó là a và b \(\left(a,b>0\right)\)
Theo đề: \(\left\{{}\begin{matrix}a+b=19\left(1\right)\\a^2+b^2=185\left(2\right)\end{matrix}\right.\)
Từ (1) \(\Rightarrow\left(a+b\right)^2=19^2=361\left(3\right)\)
Lấy \(\left(3\right)-\left(2\right)\Rightarrow2ab=176\Rightarrow ab=88\left(4\right)\)
Từ (1) và (4) \(\Rightarrow a,b\) là nghiệm của pt \(x^2-19x+88=0\)
\(\Rightarrow\left(x-11\right)\left(x-8\right)=0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=8\\b=11\end{matrix}\right.\\\left\{{}\begin{matrix}a=11\\b=8\end{matrix}\right.\end{matrix}\right.\)
Vậy 2 số cần tìm là 8 và 11
Gọi hai số cần tìm là x, y.
Theo đề bài ta có:
Suy ra x, y là nghiệm của phương trình:
Vậy hai số cần tìm là 12 và 8
Gọi 2 số là a và b (a,b....)
Theo bài ta có:
\(\hept{\begin{cases}a+b=23\\\left(a-b\right)^2=23\end{cases}}\Rightarrow\hept{\begin{cases}a=23-b\\\left(a-b\right)^2=23\end{cases}}\)
\(\Rightarrow\left(23-b-b\right)^2=23\)\(\Rightarrow b=....\)
\(\Rightarrow a=23-b=23-....\)