Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-5a+b=3\\\dfrac{3}{2}a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{8}{13}\\b=-\dfrac{1}{13}\end{matrix}\right.\)
b: Tọa độ giao điểm của (d1) và (d2) là;
\(\left\{{}\begin{matrix}2x+5y=17\\4x-10y=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=1\end{matrix}\right.\)
Vì (d3) đi qua M(9;-6) và N(6;1) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}6a-8=b\\9a+48=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6a-b=8\\9a-b=-48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{56}{3}\\b=-120\end{matrix}\right.\)
Hướng dẫn trả lời:
Gọi (d) là đồ thị hàm số y = ax + b
a) Vì A(1; 3) ∈ (d) nên 3 = a + b
Vì B(-1; -1) ∈ (d) nên -1 = -a + b
Ta có hệ phương trình: {a+b=3−a+b=−1{a+b=3−a+b=−1
Giải hệ phương trình ta được: a = 2; b = 1
b) Vì (D): y = ax + b song song với đường thẳng (d’): y = x + 5 nên suy ra:
a = a’ = 1
Ta được (d): y = x + b
Vì C (1; 2) ∈ (d): 2 = 1 + b ⇔ b =1
Vậy a = 1; b = 1
a, Gọi pt đường thẳng đi qua A và B là (d) y = ax + b
Vì A thuộc (d) => 1 = 2a + b (1)
Vì B thuộc (d) => 2 = a + b (2)
Lấy (1) - (2) được a = -1
thay a = -1 vào (2) => b = 3
=> (d) y = -x + 3
b,Đường thẳng x = 1 ???
b) Tọa độ giao điểm của hai đừng thẳng x=1 và y=2x+1 là nghiệm của hệ phương trình:
\(\hept{\begin{cases}x=1\\y=2x+1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)=> C(1; 3) là giao điểm
Đường thẳng y=mx+1 đi qua C (1; 3) khi đó C thuộc đường thẳng y=mx+1
=> 3=m.1+1 <=> m=2
xin lỗi mình chưa đọc chỗ parabol ,sửa dòng 8 dưới lên nhé
\(x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)
\(\Leftrightarrow\frac{1}{2}x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)
\(\Leftrightarrow\frac{1}{2}\left(2m-2\right)\left[16-2\left(2m-2\right)\right]+48=0\)
\(\Leftrightarrow\left(m-1\right)\left(20-4m\right)+48=0\Leftrightarrow-4m^2+20m-20+4m+48=0\)
\(\Leftrightarrow-4m^2+24m+28=0\Leftrightarrow m^2-6m-7=0\)
Ta có : a - b + c = 1 + 6 - 7 = 0
vậy pt có nghiệm x = -1 ; x = 7
a) vì A(-1; 3) thuộc (d) nên:
3 = 2.(-1) - a + 1
<=> 3 = -2 - a + 1
<=> a = 4
b) Lập phương trình hoành độ giao điểm:
\(2x-a+1=\frac{1}{2}x^2\)
\(\Leftrightarrow\frac{1}{2}x^2-2x+a-1=0\)
ta có: \(y_1=\frac{1}{2}x_1^2\)
\(y_2=\frac{1}{2}x_2^2\)
\(\Leftrightarrow x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)
\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1^2+x_2^2\right)\right]+48=0\)
\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)
Theo định lý viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=\frac{a-1}{2}\end{cases}}\)
\(\Leftrightarrow\left(\frac{a-1}{2}\right)\left[\frac{1}{2}\cdot4^2-2\left(\frac{a-1}{2}\right)\right]+48=0\)
\(\Leftrightarrow10a-a^2+87=0\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=5-4\sqrt{7}\\x_2=5+4\sqrt{7}\end{cases}}\)