Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vk yêu để anh giúp cho !
\(A\left(x\right)=3x^2+5x^3+x-2x^2-x+1-4x^3-2x-3\)
\(\Leftrightarrow A\left(x\right)=x^3-x-2\)
Ta có \(A\left(x\right)x^3-x-2=B\left(x\right)=2x-2\)
\(\Leftrightarrow x^3-2=2x\)( Vì cả 2 vế đều có -2 vợ nhé )
\(\Leftrightarrow x^3=2x+x=3x\)
\(\Rightarrow x=0\)( Vì chỉ có x=0 mới thỏa mãn điều kiện trên )
Chúc vk yêu học giỏi !
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
2: B=|x+5|-|x-2|<=|x+5-x+2|=7
Dấu = xảy ra khi -5<=x<=2
a) Ta có : \(|x-7|\ge0\)
\(\Rightarrow A=124-5|x-7|\ge124\left(1\right)\)
Mà \(A=0\)
\(\Leftrightarrow5|x-7|=0\)
\(\Leftrightarrow x=7\left(2\right)\)
Từ (1) và (2) => max A = 124
b)
+) Với \(x\ge\frac{2}{3}\)thì \(x-\frac{2}{3}\ge0\)
\(\Rightarrow|x-\frac{2}{3}|=x-\frac{2}{3}\)
Thay vào ta tính được \(B=\frac{7}{6}\)( bạn tự thay vào tính nha )
Còn lại bạn tự làm nha .
Cuối cùng ra \(_{max}B=\frac{7}{6}\)
Áp dụng bất đẳng thức \(\left|a\right|-\left|b\right|\le\left|a-b\right|\) ta có:
\(A=\left|x\right|-\left|x-2\right|\le\left|x-x-2\right|=\left|-2\right|=2\)
Dấu " = " xảy ra khi \(x\ge0;x-2\ge0\Rightarrow x\ge2\)
Vậy \(MAX_A=2\) khi \(x\ge2\)