Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4M=\left(2x-y-1\right)^2+\left(3y^2+2y+3\right)\)
\(4M=\left(2x-y-1\right)^2+\left[\left(\sqrt{3}y\right)^2+2.\sqrt{3}y.\frac{1}{\sqrt{3}}+\frac{1}{3}\right]+\frac{8}{3}\)
\(4M=\left(2x-y-1\right)^2+\left(\sqrt{3}y+\frac{\sqrt{3}}{3}\right)^2+\frac{8}{3}\)
\(GTNN\left(M\right)=\frac{2}{3}\)
\(khi...y=-\frac{1}{3};x=\frac{1}{3}\)
\(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{2\left(x+y\right)^2}{4}}=4+2=6\)
Dấu "=" xảy ra tại x=y=1/2
Sửa đề
\(2A=2x^2+2y^2+2xy-2x+2y+2\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)\)
\(=\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
\(\Rightarrow A_{min}=0\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
thêm x2 + y2 + z2 = 1 nha
HT nha vinh
Đặt A=x^2+y^2-xy+y+1
2A=2x^2+2y^2-2xy+2y+2
=(x^2-2xy+y^2)+(y^2+2y+1)+x^2+1
=(x-y)^2+(y+1)^2+x^2+1 >= 1 với mọi x (do......>=0)
min2A=1 => minA=1/2
Dấu "=" xảy ra <=> x=y=-1
GTNN không thể x=y đưọc
Đặt A= ....
\(\left(x-\frac{y}{2}\right)^2+\frac{3}{4}\left(y+\frac{2}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)
Đẳng thức khi y=-2/3; x=-1/3