Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tìm GTNN
\(A=2x^2+y^2+2xy-8x+2028\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+16\right)+2012\)
\(=\left(x+y\right)^2+\left(x-4\right)^2+2012\)
Ta có :
\(\left(x+y\right)^2\ge0\) với mọi x
\(\left(x-4\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)
Dấu = xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+y\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\)
Vậy \(Min_A=2012\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\)
A=2x2+y2+2xy-8x+2028=(x2+2xy+y2)+(x2-8x+16)+2012=(x+y)2+(x-4)2+2012
Vì (x+y)2\(\ge\)0\(\forall\)x,y
(x-4)2\(\ge0\forall x\)
=>(x+y)2+(x-4)2\(\ge0\)
=>(x+y)2+(x-4)2+2012\(\ge2012\forall x,y\)
Đạt được khi và chỉ khi:
\(\left\{{}\begin{matrix}x-4=0\rightarrow x=4\\x+y=0\rightarrow y=-4\end{matrix}\right.\)
Vậy Amin=2012<=>x=4,y=-4
\(A=x^2-2xy+6y^2-12x+3y+45\)
\(A=x^2-2x\left(y+6\right)+6y^2+3y+45\)
\(A=x^2-2x\left(y+6\right)+y^2+2.y.6+36+5y^2-9y+9\)
\(A=x^2-2x\left(y+6\right)+\left(y+6\right)^2+5\left(y^2-2.y.\frac{9}{10}+\frac{81}{100}\right)-\frac{81}{20}+9\)
\(A=\left(x-y-6\right)^2+5\left(y-\frac{9}{10}\right)^2-\frac{99}{20}\)
Ta thấy: \(\left(x-y-6\right)^2\ge0;5\left(y-\frac{9}{10}\right)^2\ge0\forall x;y\)
\(\Rightarrow A\ge-\frac{99}{20}.\)Vậy \(Min_A=-\frac{99}{20}.\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-6=0\\y-\frac{9}{10}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=6\\y=\frac{9}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{69}{10}\\y=\frac{9}{10}\end{cases}}.\)
Xin lỗi, \(Min_A=\frac{99}{20}\)nha bạn, vì \(-\frac{81}{20}+9=-\left(\frac{81}{20}-9\right)=-\left(-\frac{99}{20}\right)=\frac{99}{20}.\)
a) \(A=x^2+2y^2+2xy+4x+6y+19\)
\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)
b)Đề có gì đó sai sai...
c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!
b) \(P=2x^2+y^2+2xy-2y-4\)
\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)
\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)
\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)
Có \(2P\ge-12\Leftrightarrow P\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
Tìm GTNN chủa biểu thức:
a, A=x2+6y2-2xy-12x+2y+45
b, B=x2-2xy+3y2-2xy-10y+20
c, C=x2+4y2-2xy-10x+4y+32
\(K=2x^2+2y^2+2xy-6x-6y-13\)
\(K=2x^2+2y^2+2xy-6x-6y-\left(2\cdot3+6\cdot1+1\right)\)
\(K=\left(2x^2+2y^2+2xy-2\cdot3\right)-\left(6x+6y+6\cdot1\right)-1\)
\(K=2\left(x^2+y^2+xy-3\right)-6\left(x+y+1\right)-1\)
\(K=2\left(x^2+y^2+xy-3\right)-2\cdot3\left(x+y+1\right)-1\)
\(K=2\left(x^2+y^2+xy-3\right)-2\cdot\left(3x+3y+3\cdot1\right)-1\)
\(K=2\left(x^2+y^2+xy-3-3x-3y-3\right)-1\)
\(K=2\left(x^2+y^2+xy-3x-3y-3-3\right)-1\)
\(K=2\left(x^2+y^2+xy-3x-3y-6\right)-1\)
\(K=2\left(x^2+y^2+xy-3x-3y\right)-2\cdot6-1\)
\(K=2\left(x^2+y^2+xy-3x-3y\right)-13\)
\(K=2\left[\left(-3y+y^2\right)-\left(3x-x^2\right)+xy\right]-13\)
Để \(K\) là \(GTNN\) thì \(2\left[\left(-3y+y^2\right)-\left(3x-x^2\right)+xy\right]\) phải có \(GTNN;\)
Để \(2\left[\left(-3y+y^2\right)-\left(3x-x^2\right)+xy\right]\) là \(GTNN\)( không xét \(x\cdot y\)) thì ta có:
\(-3y+y^2\inℤ\) và phải có \(GTNN\) (1)
\(3x-x^2\inℕ\) và phải có \(GTLN\) (2)
Để thỏa mãn (1) thì \(y\in\left\{1,2\right\}\) (do \(-3\cdot1+1^2=-3\cdot2+2^2\)) và \(x\in\left\{1,2\right\}\) vì lý do tương tự (1).
Nhưng (1) cần càng nhỏ càng tốt và (2) thì ngược lại\(\Rightarrow y=1;x=2\) (chỉ mới là giả thuyết do chưa xét \(x\cdot y\))
Xét với mọi trường hợp:
K trong mọi trường hợp \(x\ne2;y\ne1\)luôn lớn hơn K trong trường hợp \(x=2;y=1\Rightarrow\) chắc chắn \(x=2;y=1\)
Thay \(x\) trong biểu thức của đề bài thành \(1\); \(y\) thành \(2\);giải ra được \(GTNN\) của \(K=\left(-17\right)\)