K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

Nhận xét : \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}>0\) 

\(A=\frac{x+1}{x^2+x+1}\)  \(\Leftrightarrow A\left(x^2+x+1\right)=x+1\Leftrightarrow Ax^2+x\left(A-1\right)+\left(A-1\right)=0\) (*)

Ta coi PT trên là PT bậc hai ẩn x.

Xét biệt thức \(\Delta=\left(A-1\right)^2-4A\left(A-1\right)=-3A^2+2A+1=\left(1-A\right)\left(3A+1\right)\)

Để tồn tại GTLN và GTNN tức là tồn tại giá trị của x thỏa mãn PT (*) có nghiệm, tức \(\Delta\ge0\)

Hay \(-\frac{1}{3}\le A\le1\)

Từ đó tìm được min A = -1/3 và max A = 1 (bạn tự tìm x)

11 tháng 1 2017

\(A=\frac{2y+2}{y^2+3}\Leftrightarrow\)

\(A-1=\frac{\left(2y+2\right)-y^2-3}{y^2+3}=\frac{-\left(y-1\right)^2}{y^2+3}\le0\Rightarrow A\le1\) đẳng thức khi y=1=> x=0

ay^2+3a-2y-2

1-a(3a-2)=3a^2-2a-1<0

a=1

a=-1/3

14 tháng 7 2015

1) ta có

\(\sqrt{x-2}\ge0\)với mọi x 

=>A=1+\(\sqrt{x-2}\ge1\)

dấu "=" xảy ra khi:

x-2=0

<=>x=2

Vậy GTNN của A  là 1 tại x=2

2)

ta có :

\(-\sqrt{2x-1}\le0\)

=>B=5-\(\sqrt{2x-1}\le5\)

Dấu "=" xảy ra khi:

2x-1=0

<=>2x=1

<=>x=1/2

Vậy GTLN của B là 5 tại x=1/2

20 tháng 12 2016

\(A=\frac{x^2+1}{x^2-x+1}=\frac{x^2-x+1+x}{x^2-x+1}=1+\frac{x}{x^2-x+1}\)

xét \(b=\frac{x}{x^2-x+1}\Leftrightarrow bx^2-bx+b=x\)

\(\Leftrightarrow bx^2-\left(b+1\right)x+b=0\left(1\right)\)

Bài toán trở thành tìm b để (1) có nghiệm

Nếu \(b=0\Leftrightarrow-x=0\Rightarrow x=0\)

Nếu \(b\ne0\)cần \(\Delta_x\ge0\Rightarrow\left(b+1\right)^2-4.b^2\ge0\)

\(\Leftrightarrow-3b^2+2b+1\ge0\)\(\Delta_b=1-\left(-3\right).1=4\)

\(\Rightarrow\frac{-1}{3}\le b\le1\)

\(\Rightarrow\frac{2}{3}\le A\le2\)