K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

\(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Ta thấy:

\(\left(x+1\right)^2\ge0\)

\(\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+1\ge0+0+1\)

\(\Rightarrow B\ge1\)

Vậy \(GTNN_B=1\)khi x + 1 = 0  và y + 3 = 0

                                    hay x = -1 và y = -3

12 tháng 11 2019

a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)

\(\ge\left|x+1+y-2\right|\)

\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0

Vậy Min A = 4 <=>  (x + 1)(y - 2) \(\ge\)0

28 tháng 9 2016

gtnn nghia la gi

28 tháng 9 2016

GTNN nghĩa là giá trị nhỏ nhất đó bạn. Bạn biết thì giải giúp nhé

24 tháng 5 2020

Ta có: \(\left(x-3\right)^2\ge0;\left(y-1\right)^2\ge0\)

=> \(B=\left(x-3\right)^2+\left(y-1\right)^2+2020\ge2020\)

Dấu "=" xảy ra <=> x - 3 = 0 và y - 1 = 0 <=> x = 3 và y = 1 

Vậy GTNN của B = 2020 đạt tại x = 3 và y = 1.

24 tháng 5 2020

\(B=\left(x-3\right)^2+\left(y-1\right)^2+2020\)

Ta có \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x-3\right)^2+\left(y-1\right)^2+2020\ge2020\)

=> B\(\ge\)2020

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=1\end{cases}}}\)

Vậy GTNN của B=2020 đạt được khi x=3 và y=1

11 tháng 9 2019

B1: Đk: 5x ≥ 0 => x ≥ 0

Vì |x + 1| ≥ 0 => |x + 1| = x + 1

     |x + 2| ≥ 0 => |x + 2| = x + 2

     |x + 3| ≥ 0 => |x + 3| = x + 3

     |x + 4| ≥ 0 => |x + 4| = x + 4

=> |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x

 => x + 1 + x + 2 + x + 3 + x + 4 = 5x

=> 4x + 10 = 5x

=> x = 10

B2: Ta có: |x - 2018| = |2018 - x|

=> A=|x + 2000| + |2018 - x| ≥ |x + 2000 + 2018 - x| = |4018| = 4018

Dấu " = " xảy ra <=> (x + 2000)(x - 2018) ≥ 0

Th1: \(\hept{\begin{cases}x+2000\ge0\\x-2018\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge-2018\\x\le2018\end{cases}}\Rightarrow-2018\le x\le2018\)

Th2: \(\hept{\begin{cases}x+2000\le0\\x-2018\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le-2018\\x\ge2018\end{cases}}\)(vô lý)

Vậy GTNN của A = 4018 khi -2018 ≤ x ≤ 2018

B3:

a, Vì |x + 1| ≥ 0 ; |2y - 4| ≥ 0

=> |x + 1| + |2y - 4| ≥ 0

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+1=0\\2y-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy...

b, Vì |x - y + 1| ≥ 0 ; (y - 3)2 ≥ 0

 => |x - y + 1| + (y - 3)2 ≥ 0 

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=-1\\y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=-1\\y=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy...

c, Vì |x + y| ≥ 0 ; |x - z| ≥ 0  ; |2x - 1| ≥ 0 

=> |x + y| + |x - z| + |2x - 1| ≥ 0 

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-z=0\\2x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=z\\x=\frac{1}{2}\end{cases}\Leftrightarrow}}\hept{\begin{cases}\frac{1}{2}+y=0\\x=z=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{-1}{2}\\x=z=\frac{1}{2}\end{cases}}\)

22 tháng 12 2019

coi lại mới thấy trình bày ngờ-u :)) 

B1: Đk: 5x ≥ 0 => x ≥ 0

=> x + 1 > 0 => |x + 1| = x + 1

=> x + 2 > 0 => |x + 2| = x + 2 

=> x + 3 > 0 => |x + 3| = x + 3 

=> x + 4 > 0 => |x + 4| = x + 4 

Ta có:  |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x

=> .... Làm tiếp như dưới

2 tháng 9 2016

a) do 2 | 3x-2 | lớn hơn hoặc bằng 0 nên GTNN của biểu thức trên là 1

b) do x2 lớn hơn hoặc bằng 0, 3 |y-2| lớn hơn hoặc bằng 0 nên GTNN của biểu thức trên là 1

c) do |x+1| và |y+3| lớn hơn hoặc bằng 0 nên GTNN của biểu thức trên là 2

d) tương tự câu c