Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BÀI 1:
\(A=\left(x-10\right)^2+103\)
Có: \(\left(x-10\right)^2\ge0\forall x\)
=> \(A\ge103\)
DẤU "=" XẢY RA <=> \(\left(x-10\right)^2=0\Rightarrow x=10\)
\(B=\left(2x+1\right)^2-6\)
Có: \(\left(2x+1\right)^2\ge0\forall x\)
=> \(B\ge-6\)
DẤU "=" XẢY RA <=> \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)
BÀI 3:
a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)
\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)
\(A=2\)
b) \(B=\left(2x\right)^3+3^3-8x^3+2\)
\(B=29\)
Bài 1.
A = x2 - 20x + 103
A = ( x2 - 20x + 100 ) + 3
A = ( x - 10 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra <=> x - 10 = 0 => x = 10
=> MinA = 3 <=> x = 10
B = 4x2 + 4x - 5
B = ( 4x2 + 4x + 1 ) - 6
B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinB = -6 <=> x = -1/2
Bài 2.
A = -x2 + 8x - 21
A = -x2 + 8x - 16 - 5
A = -( x2 - 8x + 16 ) - 5
A = -( x - 4 )2 - 5 ≤ -5 ∀ x
Đẳng thức xảy ra <=> x - 4 = 0 => x = 4
=> MaxA = -5 <=> x = 4
B = lỗi đề :>
Bài 3.
a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )
= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )
= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2
= 2 ( đpcm )
b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )
= ( 2x )3 + 27 - 8x3 + 2
= 8x3 + 27 - 8x3 + 2
= 29 ( đpcm )

\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)

a ) \(\left(x+y\right)^3+\left(x-y\right)^3-2x^3\)
\(=x^3+3x^2y+3y^2x+y^3+x^3-3x^2y+3y^2x-y^3-2x^3\)
\(=\left(x^3+x^3-2x^3\right)+\left(y^3-y^3\right)+\left(3x^2y-3x^2y\right)+\left(3y^2x+3y^2x\right)\)
\(=6y^2x\)
b ) \(\left(x+y\right)^2-\left(x-y\right)^2+\left(x+y\right)\left(x-y\right)\)
\(=\left(x+y-x+y\right)\left(x+y+x-y\right)+x^2-y^2\)
\(=2y.2x+x^2-y^2\)
\(=x^2-y^2+4xy\)
c ) \(\left(3x+1\right)^2+2\left(9x^2-1\right)+\left(3x-1\right)^2\)
\(=\left(3x+1\right)^2+2\left(3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(3x+1+3x-1\right)^2\)
\(=\left(6x\right)^2=36x^2\)
d ) \(\left(a+b+c\right)^2-2\left(a+b+c\right)\left(b+c\right)+\left(b+c\right)^2\)
\(=\left(a+b+c-b-c\right)^2\)
\(=a^2\)

Cần điều kiện x;y dương
\(M=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2\)
\(M\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2=\frac{25}{2}\)
\(M_{min}=\frac{25}{2}\) khi \(x=y=\frac{1}{2}\)

\(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\\ A=\left(x^2-5x+4\right)\left(x^2-5x+6\right)\\ A=\left(x^2-5x+5-1\right)\left(x^2-5x+5+1\right)\\ A=\left(x^2-5x+5\right)^2-1\ge-1\)
đẳng thức xảy ra khi :
\(x^2-5x+5=0\\ x^2-2.\dfrac{5}{2}x+\dfrac{25}{4}=\dfrac{25}{4}-5\\ \left(x-\dfrac{5}{2}\right)^2=\dfrac{5}{4}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{5}{2}=\sqrt{\dfrac{5}{4}}\\x-\dfrac{5}{2}=-\sqrt{\dfrac{5}{4}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{\sqrt{5}+5}{2}\\x=-\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)
vậy GTNN của A =-1 tại \(\left[{}\begin{matrix}x=\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{\sqrt{5}+5}{2}\\x=-\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)
cho 10 cái
Ta có : ( x + 1 ) ^ 2 > hoặc = 0 và ( y - 2 ) ^ 2 > hoặc = 0
=> GTNN của ( x + 1 ) ^ 2 = 0 và ( y - 2 ) ^ 2 = 0
x + 1 = 0 y - 2 = 0
x = -1 y = 2
Thay x và y vào ta được biểu thức sau :
B = ( -1 + 2 ) ^ 2 + ( -1 + 1 ) ^ 2 + ( 2 - 2 ) ^ 2
B = 1 ^ 2 + 0 ^ 2 + 0 ^ 2
B = 1 + 0 + 0
B = 1
Vậy GTNN của B = 1 khi x = -1 và y = 2
CHÚC BN HC TỐT NHA !!!